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Online performance of reinforcement learning
with internal reward functions

Proposers:

I Peter Auer, University of Leoben

I Bernhard Schölkopf, MPI Tübingen

I John Shawe-Taylor, University College London

Goals:

I Online analysis of reinforcement learning

I Online analysis for continuous state spaces

I Design of internal reward functions
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Sequential Forecasting and Partial Feedback:
Applications to Machine Learning

Proposers:

I Peter Auer (Austria), Nicolò Cesa-Bianchi (Italy), Claudio
Gentile (Italy), András György (Hungary), Gábor Lugosi
(Spain), Yishay Mansour (Israel), Csaba Szepesvári (Canada)

Goals:

I Use machine learning techniques for parameter tuning

I Use inverse reinforcement learning for apprenticeship learning

I Sequential forecasting when the target (e.g. user interest) is
changing

Sequential Forecasting Online RL



Activities (partial list)

I Hired a post doctoral researcher (Christos Dimitrakakis) and a
PhD student (Ivett Szabó).

I Organized the PASCAL workshop “Principled methods of
trading exploration and exploitation Workshop” in London.

I Organized PASCAL “Exploration vs. Exploitation Challenge”.

I Organized NIPS workshop “On-line trading of Exploration and
Exploitation Workshop” in Canada.

I Organized a workshop on reinforcement learning in Tübingen.
Remi Munos took the initiative to reestablish the
European Workshop on Reinforcement Learning, Lille
2008.

I Expertise from these projects is used in a new
7th framework STREP: PinView
(Personal Information Navigator Adapting Through Viewing).
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Scientific outcome (partial list)

I P. Auer and R. Ortner: Logarithmic Online Regret Bounds for

Undiscounted Reinforcement Learning, NIPS 2006.

I P. Auer, R. Ortner, and C. Szepesvari: Improved Rates for the Stochastic

Continuum-Armed Bandit Problem, COLT 2007.

I G. Neu and Cs. Szepesvári: Apprenticeship learning using inverse

reinforcement learning and gradient methods, UAI 2007.

I A. György, T. Linder, G. Lugosi, and Gy. Ottucsák: The on-line shortest

path problem under partial monitoring, JMLR 2007.

I R. Ortner: Linear Dependence of Stationary Distributions in Ergodic

Markov Decision Processes, OR Letters 2007.

I R. Ortner: Pseudometrics for State Aggregation in Average Reward

Markov Decision Processes, ALT 2007.

I Ch. Dimitrakakis and Ch. Savu-Krohn: Cost-minimising strategies for

data labelling - optimal stopping and active learning, FoIKS 2008.

I P. Auer, R. Ortner, T. Jaksch: Near-optimal Regret Bounds for

Reinforcement Learning, submitted.
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ML algorithms for parameter optimization: UCT

I The UCT (upper confidence for trees) algorithm [KS 2006] is
a method for exploring trees, based on the UCB algorithm for
the bandit problem.

I Used also in MoGo (world champion in computer Go, Sylvain
Gelly et al.).

I For parameter optimization, a tree is built by hierarchically
splitting the parameter interval:

I At an interior node, select a branch (i.e. subinterval) according
to UCB, and descend.

I At a leaf, split the leaf (i.e. split the interval) and sample from
the ’unvisited’ child node.
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Example for parameter optimization with UCT
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Example for parameter optimization with UCT
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Example for parameter optimization with UCT
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Example for parameter optimization with UCT
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Example for parameter optimization with UCT
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Application of UCT parameter optimization

I Churn prediction of a telecommunication company using the
RPROP algorithm with 7 parameters.

I UCT converged to a good solution five times faster than
RSPSA (Resilient Simultaneous Perturbation Stochastic
Approximation).

Sequential Forecasting Online RL



Application of UCT parameter optimization

I Churn prediction of a telecommunication company using the
RPROP algorithm with 7 parameters.

I UCT converged to a good solution five times faster than
RSPSA (Resilient Simultaneous Perturbation Stochastic
Approximation).

I One RPROP run took approx. 12 hours. On 50 processors,
the parameter tuning took approx 3 weeks.

Sequential Forecasting Online RL



Apprenticeship learning using inverse reinforcement
learning and gradient methods

Inverse reinforcement learning (IRL):

I How to imitate an observed (optimal) behavior of an expert?
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Apprenticeship learning using inverse reinforcement
learning and gradient methods

Inverse reinforcement learning (IRL):

I How to imitate an observed (optimal) behavior of an expert?

I Imitate behavior in observed states!

I Problem: does not generalize well.

I Extract a reward function that explains the observed behavior!

Sequential Forecasting Online RL



Solving the IRL task

Consider (linearly) parameterized rewards, rθ(s) =
∑

n

i=1 θiφi (s).

I Find a parameter vector θ which generates a behavior that is
close to the observed expert behavior.

I Define closeness:

J(θ) =
∑

s∈S

µE (s)(πθ(s)− πE (s))2

(µE – estimate of the expert’s stationary distribution,
πθ – optimal policy for θ, πE – expert’s policy).

I Natural gradient techniques can be applied to improve
performance.
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IRL – Experiments

Expert trajectories

Low error region

Direct policy imitation

Low error region

IRL
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Reinforcement Learning

Markov decision process (MDP) M:

S . . . state space

A . . . action space

r(s, a) . . . reward in [0, 1] for choosing

action a in state s

p(s ′|s, a) . . . transition probability to state s ′

when choosing action a in state s ′

π∗ : S → A . . . optimal policy

RT (π) =
T
∑

t=1

r(st , at) . . . total reward of policy π after T steps,

st are the (random) states visited by π,

and at are the chosen actions
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Undiscounted online regret

We are interested in the online regret of a strategy π:

∆T (π) := RT (π∗)− RT (π)
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Undiscounted online regret

We are interested in the online regret of a strategy π:

∆T (π) := RT (π∗)− RT (π)

Discounted regrets are not very useful for online analysis:
For γ ∈ [0, 1),

∞
∑

t=0

γtr(s∗t , a∗t )−
∞
∑

t=0

γtr(st , at) = O(1).
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Bounds on the regret

For S = |S| states and A = |A|, our UCRL algorithm achieves

∆T (UCRL) = Õ
(

DS
√

AT
)

,

where D denotes the diameter of the MDP: This is the time, such
that for any pairs of states s1, s2 ∈ S there is a policy which moves
from s1 to s2 within D steps on average:

D = max
s1,s2

min
π

E [T (s2|π, s1)]
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Bounds on the regret

For S = |S| states and A = |A|, our UCRL algorithm achieves

∆T (UCRL) = Õ
(

DS
√

AT
)

,

where D denotes the diameter of the MDP: This is the time, such
that for any pairs of states s1, s2 ∈ S there is a policy which moves
from s1 to s2 within D steps on average:

D = max
s1,s2

min
π

E [T (s2|π, s1)]

Matching lower bound:
There are MDPs such that for any algorithm

∆T = Ω
(√

DSAT
)

.
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Relation to other work: PAC-like bounds

I E 3 by Kearns and Singh (1998):
After poly(1/ε, S , A, T ε

mix
) steps the per-trial regret is at

most ε.

I Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not ε-optimal:

#{t : at 6= aε
t} = Õ

(

S2A(T ε
mix/ε)3

)
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#{t : at 6= aε
t} = Õ
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Relation to other work: PAC-like bounds

I E 3 by Kearns and Singh (1998):
After poly(1/ε, S , A, T ε

mix
) steps the per-trial regret is at

most ε.

I Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not ε-optimal:

#{t : at 6= aε
t} = Õ

(

S2A(T ε
mix/ε)3

)

I Our result gives

#{t : at 6= aε
t} = Õ

(

D2S2A/ε2
)

.

I T ε
mix

is the number of steps such that for any policy π its
actual per-trial reward is ε-close to the expected per-trial
reward.
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Relation to other work: PAC-like bounds

I E 3 by Kearns and Singh (1998):
After poly(1/ε, S , A, T ε

mix
) steps the per-trial regret is at

most ε.

I Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not ε-optimal:

#{t : at 6= aε
t} = Õ

(

S2A(T ε
mix/ε)3

)

I Our result gives

#{t : at 6= aε
t} = Õ

(

D2S2A/ε2
)

.

I T ε
mix

is the number of steps such that for any policy π its
actual per-trial reward is ε-close to the expected per-trial
reward.

I For small ε, T ε
mix

> D/ε.
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Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.
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Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.

I We get

E [∆T (UCRL)] = O

(

D2S2A

g2
log T

)

.
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Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.

I We get

E [∆T (UCRL)] = O

(

D2S2A

g2
log T

)

.

I Burnetas, Katehakis, 1997, Tewari, Bartlett, NIPS 2007:

E [∆T ] = O

(

D2
max|S ||A|

g2
log T

)
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Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.

I We get

E [∆T (UCRL)] = O

(

D2S2A

g2
log T

)

.

I Burnetas, Katehakis, 1997, Tewari, Bartlett, NIPS 2007:

E [∆T ] = O

(

D2
max|S ||A|

g2
log T

)

I Main difference (recall D = maxs1,s2 minπ E [T (s2|π, s1)]):

Dmax = max
s1,s2

max
π

E [T (s2|π, s1)]
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The UCRL algorithm:
Upper Confidence Reinforcement Learning

I The algorithm runs in rounds k = 1, 2, . . ., each starting at
some time tk .

I A new round starts when the occurrences of some state-action
pair (s, a) have doubled,

N(s, a; tk+1) = 2 · N(s, a; tk).

I Within a round, a fixed policy π̃k : S → A is used.

I The policy π̃k is chosen such that it maximizes the expected
reward for the best (maximal reward) plausible MDP, in
respect to the current empirical estimates p̂(·|s, a; tk).

I An MDP M̃ is plausible if

||p̃(·|s, a; tk)− p̂(·|s, a; tk)||1 ≤
√

const · S
N(s, a; tk)

log tk .
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Details of UCRL: The bias λ

The policy π̃k can be calculated quite quickly by value iteration:
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Details of UCRL: The bias λ

The policy π̃k can be calculated quite quickly by value iteration:

I In discounted reinforcement learning we have Bellman updates

V (s)← max
a

[

r(s, a) + γ
∑

s′

V (s ′)p(s ′|s, a)
]

.
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V (s)← max
a

[

r(s, a) + γ
∑

s′

V (s ′)p(s ′|s, a)
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I In undiscounted reinforcement learning we can use
bias updates

λ(s)← max
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Details of UCRL: The bias λ

The policy π̃k can be calculated quite quickly by value iteration:

I In discounted reinforcement learning we have Bellman updates

V (s)← max
a

[

r(s, a) + γ
∑

s′

V (s ′)p(s ′|s, a)
]

.

I In undiscounted reinforcement learning we can use
bias updates

λ(s)← max
a

[

r(s, a) +
∑

s′

λ(s ′)p(s ′|s, a)
]

and normalization

ρ ← min
s′

λ(s ′)

λ(s) ← λ(s)− ρ.
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Details of UCRL: The bias λ

The policy π̃k can be calculated quite quickly by value iteration:

I In discounted reinforcement learning we have Bellman updates

V (s)← max
a

[

r(s, a) + γ
∑

s′

V (s ′)p(s ′|s, a)
]

.

I In undiscounted reinforcement learning we can use
bias updates

λ(s)← max
a

[

r(s, a) +
∑

s′

λ(s ′)p(s ′|s, a)
]

and normalization

ρ ← min
s′

λ(s ′)

λ(s) ← λ(s)− ρ.

I The bias update converges (for non-periodic MDPs) to λ(·)
with 0 ≤ λ(s) ≤ D.
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Details of UCRL: Bias and regret

I The bias λ(·) solves the equation

λ(s) = max
a

[

r(s, a)− ρ∗ +
∑

s′

λ(s ′)p(s ′|s, a)
]

where ρ∗ is the optimal per-trial reward.

I The advantage of starting in state s over starting in state s ′

— followed by an infinite number of trials — is given by
λ(s)− λ(s ′).
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Details of UCRL: Bias and regret

I The bias λ(·) solves the equation

λ(s) = max
a

[

r(s, a)− ρ∗ +
∑

s′

λ(s ′)p(s ′|s, a)
]

where ρ∗ is the optimal per-trial reward.

I The advantage of starting in state s over starting in state s ′

— followed by an infinite number of trials — is given by
λ(s)− λ(s ′).

I For each time a non-optimal action a 6= a∗ = a∗(s) is chosen,
a regret δ is suffered,

δ = r(s, a∗)− r(s, a) +
∑

s′

λ(s ′)[p(s ′|s, a∗)− p(s ′|s, a)]

≤ r(s, a∗)− r(s, a) + D ||p(·|s, a∗)− p(·|s, a)||1
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Details of UCRL: Analysis

We compare per-trial rewards ρ̃k and ρk for the chosen policies π̃k

in the optimistic MDP M̃k and in the true MDP, resp.

E [∆T ] ≈ ρ∗T −
∑

k

ρk(tk+1 − tk)
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Details of UCRL: Analysis

We compare per-trial rewards ρ̃k and ρk for the chosen policies π̃k

in the optimistic MDP M̃k and in the true MDP, resp.

E [∆T ] ≈ ρ∗T −
∑

k

ρk(tk+1 − tk)

≤
∑

k

(ρ̃k − ρk)(tk+1 − tk)

≤
∑

k

tk+1−1
∑

t=tk

D ||p̃(·|st , at)− p(·|st , at)||1
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Details of UCRL: Analysis

We compare per-trial rewards ρ̃k and ρk for the chosen policies π̃k

in the optimistic MDP M̃k and in the true MDP, resp.

E [∆T ] ≈ ρ∗T −
∑

k

ρk(tk+1 − tk)

≤
∑

k

(ρ̃k − ρk)(tk+1 − tk)

≤
∑

k

tk+1−1
∑

t=tk

D ||p̃(·|st , at)− p(·|st , at)||1

=
∑

k

tk+1−1
∑

t=tk

Õ

(

D

√

S

N(st , at ; tk)

)
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Details of UCRL: Analysis

We compare per-trial rewards ρ̃k and ρk for the chosen policies π̃k

in the optimistic MDP M̃k and in the true MDP, resp.

E [∆T ] ≈ ρ∗T −
∑

k

ρk(tk+1 − tk)

≤
∑

k

(ρ̃k − ρk)(tk+1 − tk)

≤
∑

k

tk+1−1
∑

t=tk

D ||p̃(·|st , at)− p(·|st , at)||1

=
∑

k

tk+1−1
∑

t=tk

Õ

(

D

√

S

N(st , at ; tk)

)

=
∑

s,a

Õ
(

D
√

S · N(s, a; T )
)

= Õ
(

DS
√

AT
)
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Future research
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Future research

I Tracking changes:
Allow changes in the MDP which need to be picked up by the
learning algorithm.
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I Continuous state/action spaces:
I Difficult in a general setting
I Progress for simplified (bandit) setting
I Extend this to more interesting settings
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Future research

I Tracking changes:
Allow changes in the MDP which need to be picked up by the
learning algorithm.

I Continuous state/action spaces:
I Difficult in a general setting
I Progress for simplified (bandit) setting
I Extend this to more interesting settings

I Autonomous rewards:
Design autonomous reward functions which drive both the
consolidation and the extension of learned knowledge,
mimicking cognitive behavior.
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