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Online performance of reinforcement learning

with internal reward functions

Proposers:
» Peter Auer, University of Leoben
» Bernhard Scholkopf, MPI Tiibingen
» John Shawe-Taylor, University College London

Goals:
» Online analysis of reinforcement learning
» Online analysis for continuous state spaces

» Design of internal reward functions
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Sequential Forecasting and Partial Feedback:

Applications to Machine Learning

Proposers:

» Peter Auer (Austria), Nicold Cesa-Bianchi (Italy), Claudio
Gentile (ltaly), Andrds Gyorgy (Hungary), Gébor Lugosi
(Spain), Yishay Mansour (Israel), Csaba Szepesvari (Canada)

Goals:
» Use machine learning techniques for parameter tuning
» Use inverse reinforcement learning for apprenticeship learning

» Sequential forecasting when the target (e.g. user interest) is
changing
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Activities (partial list)

» Hired a post doctoral researcher (Christos Dimitrakakis) and a
PhD student (lvett Szabd).

» Organized the PASCAL workshop “Principled methods of
trading exploration and exploitation Workshop” in London.

» Organized PASCAL "“Exploration vs. Exploitation Challenge”.

» Organized NIPS workshop "“On-line trading of Exploration and
Exploitation Workshop” in Canada.

» Organized a workshop on reinforcement learning in Tiibingen.
Remi Munos took the initiative to reestablish the
European Workshop on Reinforcement Learning, Lille
2008.

» Expertise from these projects is used in a new
7th framework STREP: PinView
(Personal Information Navigator Adapting Through Viewing).
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Scientific outcome (partial list)

» P. Auer and R. Ortner: Logarithmic Online Regret Bounds for
Undiscounted Reinforcement Learning, NIPS 2006.

» P. Auer, R. Ortner, and C. Szepesvari: Improved Rates for the Stochastic
Continuum-Armed Bandit Problem, COLT 2007.

» G. Neu and Cs. Szepesvéri: Apprenticeship learning using inverse
reinforcement learning and gradient methods, UAI 2007.

» A. Gyorgy, T. Linder, G. Lugosi, and Gy. Ottucsdk: The on-line shortest
path problem under partial monitoring, JMLR 2007.

» R. Ortner: Linear Dependence of Stationary Distributions in Ergodic
Markov Decision Processes, OR Letters 2007.

» R. Ortner: Pseudometrics for State Aggregation in Average Reward
Markov Decision Processes, ALT 2007.

» Ch. Dimitrakakis and Ch. Savu-Krohn: Cost-minimising strategies for
data labelling - optimal stopping and active learning, FolKS 2008.

» P. Auer, R. Ortner, T. Jaksch: Near-optimal Regret Bounds for
Reinforcement Learning, submitted.
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ML algorithms for parameter optimization: UCT

» The UCT (upper confidence for trees) algorithm [KS 2006] is
a method for exploring trees, based on the UCB algorithm for
the bandit problem.

» Used also in MoGo (world champion in computer Go, Sylvain
Gelly et al.).

» For parameter optimization, a tree is built by hierarchically
splitting the parameter interval:
» At an interior node, select a branch (i.e. subinterval) according
to UCB, and descend.
> At a leaf, split the leaf (i.e. split the interval) and sample from
the "unvisited' child node.
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Example for parameter optimization with UCT
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Application of UCT parameter optimization

» Churn prediction of a telecommunication company using the
RPROP algorithm with 7 parameters.

» UCT converged to a good solution five times faster than
RSPSA (Resilient Simultaneous Perturbation Stochastic
Approximation).
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Application of UCT parameter optimization

» Churn prediction of a telecommunication company using the
RPROP algorithm with 7 parameters.

» UCT converged to a good solution five times faster than
RSPSA (Resilient Simultaneous Perturbation Stochastic
Approximation).

» One RPROP run took approx. 12 hours. On 50 processors,
the parameter tuning took approx 3 weeks.
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Apprenticeship learning using inverse reinforcement

learning and gradient methods

Inverse reinforcement learning (IRL):

» How to imitate an observed (optimal) behavior of an expert?
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» How to imitate an observed (optimal) behavior of an expert?
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Apprenticeship learning using inverse reinforcement

learning and gradient methods

Inverse reinforcement learning (IRL):

» How to imitate an observed (optimal) behavior of an expert?

» Imitate behavior in observed states!

» Problem: does not generalize well.

» Extract a reward function that explains the observed behavior!
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Solving the IRL task

Consider (linearly) parameterized rewards, rp(s) = > i, 0idi(s).
» Find a parameter vector 6 which generates a behavior that is
close to the observed expert behavior.

» Define closeness:

J(O) =) ne(s)(mo(s) — me(s))?

seS

(g — estimate of the expert's stationary distribution,
mp — optimal policy for 6, g — expert's policy).

» Natural gradient techniques can be applied to improve
performance.
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IRL — Experiments

Expert trajectories

Low error region

Low error region

1

IRL

Direct policy imitation
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Reinforcement Learning

Markov decision process (MDP) M:

S ... state space
A ... action space
r(s,a) ... reward in [0, 1] for choosing
action a in state s
p(s’|s,a) ... transition probability to state s’
when choosing action a in state s’
7.8 —A ... optimal policy
T
Ry (m) = Z r(s¢,ar) ... total reward of policy m after T steps,
t=1

st are the (random) states visited by ,

and a; are the chosen actions
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Undiscounted online regret

We are interested in the online regret of a strategy m:

Ar(rm) = Ry (7*) — Rr(n)
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Undiscounted online regret

We are interested in the online regret of a strategy m:

Ar(rm) = Ry (7*) — Rr(n)

Discounted regrets are not very useful for online analysis:

For v € [0,1),
D oAtr(stiat) = ) A'r(se a) = O(1)
t=0 t=0
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Bounds on the regret

For S = |S| states and A = | A|, our UCRL algorithm achieves
A7(UCRL) = O (DS\/AT) :

where D denotes the diameter of the MDP: This is the time, such
that for any pairs of states s, s, € S there is a policy which moves
from s; to sp within D steps on average:

D = maxminE [T (sp|m, s1)]

51,52
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Bounds on the regret

For S = |S| states and A = | A|, our UCRL algorithm achieves
ArammLy:é(stAT)7

where D denotes the diameter of the MDP: This is the time, such
that for any pairs of states s, s, € S there is a policy which moves
from s; to sp within D steps on average:

D = maxminE [T (sp|m, s1)]

51,52

Matching lower bound:
There are MDPs such that for any algorithm

AT:Q(Vﬁﬁ7>
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Relation to other work: PAC-like bounds

» E3 by Kearns and Singh (1998):
After poly(1/e, S, A, T . ) steps the per-trial regret is at
most €.

» Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not e-optimal:

#{t:a # a5} = O (SA(Thy/e)’)
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Relation to other work: PAC-like bounds

» E3 by Kearns and Singh (1998):
After poly(1/e, S, A, T . ) steps the per-trial regret is at
most €.

» Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not e-optimal:

#{t at 7é at} = (52A( mlx/6)3)

» Our result gives

#{t:a # aj} = O (D°S?°A/é?) .
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Relation to other work: PAC-like bounds

» E3 by Kearns and Singh (1998):
After poly(1/e, S, A, T . ) steps the per-trial regret is at
most €.

» Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not e-optimal:

#{t:a # a5} = O (SA(Thy/e)’)

» Our result gives

#{t:a # aj} = O (D°S?°A/é?) .

» T:. is the number of steps such that for any policy 7 its

actual per-trial reward is e-close to the expected per-trial
reward.
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Relation to other work: PAC-like bounds

» E3 by Kearns and Singh (1998):
After poly(1/e, S, A, T . ) steps the per-trial regret is at
most €.

» Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not e-optimal:

#{t:a; # a;} = O (SPA(Trin/€)°)
» Our result gives
#{t:ar# a;} = (D252A/e )

» T¢. is the number of steps such that for any policy 7 its

mix
2 actual per-trial reward is e-close to the expected per-trial
4 reward.
<
o €
Pos » Forsmalle, TS, > D/e.
(4
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Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.
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Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.

» We get

2¢c2
E[A(UCRL)] = O <Dg52 A log T) .
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Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.

» We get

2¢c2
E[A(UCRL)] = O <Dg52 A log T> .

» Burnetas, Katehakis, 1997, Tewari, Bartlett, NIPS 2007:

2
E[Ar]=0 <Dmaig|f||A’ log T)

S
%3 PAsCAL

‘. «

Sequential Forecasting Online RL



Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.

» We get

2¢c2
E[A(UCRL)] = O <Dg52 A log T> .

» Burnetas, Katehakis, 1997, Tewari, Bartlett, NIPS 2007:

2
E[Ar]=0 (DmaﬁfHA’ log T)

» Main difference (recall D = maxs, s, ming E[T(s2|7, 51)]):

Dmax = maxmax E [T (sp|m, s1)]
51,82 T
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The UCRL algorithm:

Upper Confidence Reinforcement Learning

» The algorithm runs in rounds k = 1,2, ..., each starting at
some time ty.

» A new round starts when the occurrences of some state-action
pair (s, a) have doubled,
N(s,a; tgr1) =2 N(s, a; ty).
» Within a round, a fixed policy 7 : S — A is used.
» The policy 7k is chosen such that it maximizes the expected
reward for the best (maximal reward) plausible MDP, in
respect to the current empirical estimates p(-|s, a; tx).

» An MDP M is plausible if

‘. «

<

O, . R const - S
-|s, a; t) — P(+|s, a; t < 4| ——log ty.

p 1515, i t) — B(-s, k)||1_\/N(5,a;tk) gt

554
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Details of UCRL: The bias \

The policy 7, can be calculated quite quickly by value iteration:
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Details of UCRL: The bias \

The policy 7, can be calculated quite quickly by value iteration:

» In discounted reinforcement learning we have Bellman updates

!

V(s) — max [r(s a —{—fyz V(s)p(s']s, a)] .

5

S
%o PAsCAL

Sequential Forecasting Online RL



Details of UCRL: The bias \

The policy 7, can be calculated quite quickly by value iteration:

» In discounted reinforcement learning we have Bellman updates

!

V(s) — max [r(s a —{—fyz V(s)p(s']s, a)] .

S
» In undiscounted reinforcement learning we can use
bias updates

A(s) — max [r(s a) + Z A(s")p(s'|s, a)]

sl
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Details of UCRL: The bias \

The policy 7, can be calculated quite quickly by value iteration:

» In discounted reinforcement learning we have Bellman updates

V(s) — max [r(s a —{—fyz V(s)p(s']s, a)] .

S/

» In undiscounted reinforcement learning we can use
bias updates

A(s) — max [r(s a) + Z)\ (s'|s, a)]
s/
and normalization
p «— min\(s)
sl
A(s) «— A(s) —
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Details of UCRL: The bias \

The policy 7, can be calculated quite quickly by value iteration:

» In discounted reinforcement learning we have Bellman updates

!

V(s) — max [r(s a —{—fyz V(s)p(s']s, a)] .

S
» In undiscounted reinforcement learning we can use
bias updates

A(s) — max [r(s a) + Z A(s")p(s'|s, a)]
s/
and normalization

p «— min\(s)
s/

g A(s) «— A(s) —
02_ » The bias update converges (for non-periodic MDPs) to A()
& with 0 < A(s) < D.
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Details of UCRL: Bias and regret

» The bias \(-) solves the equation

a

)\(s)—max[rsa p—I—Z)\ |sa]

where p* is the optimal per-trial reward.

» The advantage of starting in state s over starting in state s’
— followed by an infinite number of trials — is given by

A(s) — A(s).
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Details of UCRL: Bias and regret

» The bias \(-) solves the equation

)\(s)—maax[rsa p—I—Z)\ |sa]
where p* is the optimal per-trial reward.

» The advantage of starting in state s over starting in state s’
— followed by an infinite number of trials — is given by

A(s) — A(s).
» For each time a non-optimal action a # a* = a*(s) is chosen,
a regret ¢ is suffered,

5 = r(s.a%) — r(s.a) + 3 M)Ip(s']s. a%) — p(s']s, a)]

< r(s,a) —r(s,a) + Dllp(-[s,a") — p(:|s, a)ll;
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Details of UCRL: Analysis

We compare per-trial rewards i and pj for the chosen policies 7
in the optimistic MDP M, and in the true MDP, resp.

E[A7] = p'T =) prltess — t)
p
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Details of UCRL: Analysis

We compare per-trial rewards i and pj for the chosen policies 7
in the optimistic MDP M, and in the true MDP, resp.

E[A7] = p'T =) prltess — t)
p

< Z(ﬁk — pi)(tkt1 — )

k
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Details of UCRL: Analysis

We compare per-trial rewards i and pj for the chosen policies 7
in the optimistic MDP M, and in the true MDP, resp.

E[Aar] ~ p'T = piltips — ti)

P
< > (k= o) (tegr — t)
P
thr1—1
< D DIIB(Ist, ar) = p(-[sts ar)lly
k t=tk
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Details of UCRL: Analysis

We compare per-trial rewards i and pj for the chosen policies 7
in the optimistic MDP M, and in the true MDP, resp.
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PT = pilters — ta)

k

Z(ﬁk — i) (tks1 — te)

k
thr1—1

Z > DIIB(:Ist; a) —

t=ty

z”ilo(

t=ty
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N(st, at; ti)
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Details of UCRL: Analysis

We compare per-trial rewards i and pj for the chosen policies 7
in the optimistic MDP M, and in the true MDP, resp.

E[Aar] ~ p'T = piltips — ti)

k
< Z(ﬁk—ﬂk)(tk+1—tk)
k
thy1—1
< X0 X DIl = plise 20l
t=ty
thy1—1
S
= Z 2 O\ P ity
= N(st, at; ti)

- Z o) <D\/W> = 0 (DSVAT)
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Future research
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Future research

» Tracking changes:
Allow changes in the MDP which need to be picked up by the
learning algorithm.
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Future research

» Tracking changes:
Allow changes in the MDP which need to be picked up by the
learning algorithm.

» Continuous state/action spaces:
» Difficult in a general setting
» Progress for simplified (bandit) setting
» Extend this to more interesting settings
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Future research

» Tracking changes:
Allow changes in the MDP which need to be picked up by the
learning algorithm.

» Continuous state/action spaces:

» Difficult in a general setting
» Progress for simplified (bandit) setting
» Extend this to more interesting settings

» Autonomous rewards:
Design autonomous reward functions which drive both the
consolidation and the extension of learned knowledge,
mimicking cognitive behavior.
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