
Pump-Priming Projects
“Online Performance of Reinforcement Learning”

and
“Sequential Forecasting and Partial Feedback”

Peter Auer

University of Leoben, Austria

Bled, 29 January 2008

Sequential Forecasting Online RL

Online performance of reinforcement learning
with internal reward functions

Sequential Forecasting Online RL

Online performance of reinforcement learning
with internal reward functions

Proposers:

Sequential Forecasting Online RL

Online performance of reinforcement learning
with internal reward functions

Proposers:

I John Shawe-Taylor, University College London

Sequential Forecasting Online RL

Online performance of reinforcement learning
with internal reward functions

Proposers:

I Bernhard Schölkopf, MPI Tübingen

I John Shawe-Taylor, University College London

Sequential Forecasting Online RL

Online performance of reinforcement learning
with internal reward functions

Proposers:

I Peter Auer, University of Leoben

I Bernhard Schölkopf, MPI Tübingen

I John Shawe-Taylor, University College London

Sequential Forecasting Online RL

Online performance of reinforcement learning
with internal reward functions

Proposers:

I Peter Auer, University of Leoben

I Bernhard Schölkopf, MPI Tübingen

I John Shawe-Taylor, University College London

Goals:

I Online analysis of reinforcement learning

I Online analysis for continuous state spaces

I Design of internal reward functions

Sequential Forecasting Online RL

Sequential Forecasting and Partial Feedback:
Applications to Machine Learning

Proposers:

I Peter Auer (Austria), Nicolò Cesa-Bianchi (Italy), Claudio
Gentile (Italy), András György (Hungary), Gábor Lugosi
(Spain), Yishay Mansour (Israel), Csaba Szepesvári (Canada)

Goals:

I Use machine learning techniques for parameter tuning

I Use inverse reinforcement learning for apprenticeship learning

I Sequential forecasting when the target (e.g. user interest) is
changing

Sequential Forecasting Online RL

Activities (partial list)

I Hired a post doctoral researcher (Christos Dimitrakakis) and a
PhD student (Ivett Szabó).

I Organized the PASCAL workshop “Principled methods of
trading exploration and exploitation Workshop” in London.

I Organized PASCAL “Exploration vs. Exploitation Challenge”.

I Organized NIPS workshop “On-line trading of Exploration and
Exploitation Workshop” in Canada.

I Organized a workshop on reinforcement learning in Tübingen.
Remi Munos took the initiative to reestablish the
European Workshop on Reinforcement Learning, Lille
2008.

I Expertise from these projects is used in a new
7th framework STREP: PinView
(Personal Information Navigator Adapting Through Viewing).

Sequential Forecasting Online RL

pauer
Line

pauer
Line

Scientific outcome (partial list)

I P. Auer and R. Ortner: Logarithmic Online Regret Bounds for

Undiscounted Reinforcement Learning, NIPS 2006.

I P. Auer, R. Ortner, and C. Szepesvari: Improved Rates for the Stochastic

Continuum-Armed Bandit Problem, COLT 2007.

I G. Neu and Cs. Szepesvári: Apprenticeship learning using inverse

reinforcement learning and gradient methods, UAI 2007.

I A. György, T. Linder, G. Lugosi, and Gy. Ottucsák: The on-line shortest

path problem under partial monitoring, JMLR 2007.

I R. Ortner: Linear Dependence of Stationary Distributions in Ergodic

Markov Decision Processes, OR Letters 2007.

I R. Ortner: Pseudometrics for State Aggregation in Average Reward

Markov Decision Processes, ALT 2007.

I Ch. Dimitrakakis and Ch. Savu-Krohn: Cost-minimising strategies for

data labelling - optimal stopping and active learning, FoIKS 2008.

I P. Auer, R. Ortner, T. Jaksch: Near-optimal Regret Bounds for

Reinforcement Learning, submitted.

Sequential Forecasting Online RL

ML algorithms for parameter optimization: UCT

I The UCT (upper confidence for trees) algorithm [KS 2006] is
a method for exploring trees, based on the UCB algorithm for
the bandit problem.

I Used also in MoGo (world champion in computer Go, Sylvain
Gelly et al.).

I For parameter optimization, a tree is built by hierarchically
splitting the parameter interval:

I At an interior node, select a branch (i.e. subinterval) according
to UCB, and descend.

I At a leaf, split the leaf (i.e. split the interval) and sample from
the ’unvisited’ child node.

Sequential Forecasting Online RL

Example for parameter optimization with UCT

A

0 1

Auer, Szepesvári, and György Sequential Forecasting and Partial Feedback

Example for parameter optimization with UCT

A

0.4:0.9

0 1

X

Auer, Szepesvári, and György Sequential Forecasting and Partial Feedback

Example for parameter optimization with UCT

A

B C

0.4:0.9

0.9/1 0/0

0 10.5

X

Auer, Szepesvári, and György Sequential Forecasting and Partial Feedback

Example for parameter optimization with UCT

A

B C

0.4:0.9 0.7:0.1

0.9/1 0.1/1

0 10.5

XX

Auer, Szepesvári, and György Sequential Forecasting and Partial Feedback

Example for parameter optimization with UCT

A

B C

D E

0.7:0.1

0.4:0.9

0.9/1 0.1/1

0/0 0.9/1

0 10.50.25

XX

Auer, Szepesvári, and György Sequential Forecasting and Partial Feedback

Example for parameter optimization with UCT

A

B C

D E

0.7:0.1

0.2:0.7 0.4:0.9

1.6/2 0.1/1

0.7/1 0.9/1

0 10.50.25

X XX

Auer, Szepesvári, and György Sequential Forecasting and Partial Feedback

Application of UCT parameter optimization

I Churn prediction of a telecommunication company using the
RPROP algorithm with 7 parameters.

I UCT converged to a good solution five times faster than
RSPSA (Resilient Simultaneous Perturbation Stochastic
Approximation).

Sequential Forecasting Online RL

Application of UCT parameter optimization

I Churn prediction of a telecommunication company using the
RPROP algorithm with 7 parameters.

I UCT converged to a good solution five times faster than
RSPSA (Resilient Simultaneous Perturbation Stochastic
Approximation).

I One RPROP run took approx. 12 hours. On 50 processors,
the parameter tuning took approx 3 weeks.

Sequential Forecasting Online RL

Apprenticeship learning using inverse reinforcement
learning and gradient methods

Inverse reinforcement learning (IRL):

I How to imitate an observed (optimal) behavior of an expert?

Sequential Forecasting Online RL

Apprenticeship learning using inverse reinforcement
learning and gradient methods

Inverse reinforcement learning (IRL):

I How to imitate an observed (optimal) behavior of an expert?

I Imitate behavior in observed states!

Sequential Forecasting Online RL

Apprenticeship learning using inverse reinforcement
learning and gradient methods

Inverse reinforcement learning (IRL):

I How to imitate an observed (optimal) behavior of an expert?

I Imitate behavior in observed states!

I Problem: does not generalize well.

Sequential Forecasting Online RL

Apprenticeship learning using inverse reinforcement
learning and gradient methods

Inverse reinforcement learning (IRL):

I How to imitate an observed (optimal) behavior of an expert?

I Imitate behavior in observed states!

I Problem: does not generalize well.

I Extract a reward function that explains the observed behavior!

Sequential Forecasting Online RL

Solving the IRL task

Consider (linearly) parameterized rewards, rθ(s) =
∑

n

i=1 θiφi (s).

I Find a parameter vector θ which generates a behavior that is
close to the observed expert behavior.

I Define closeness:

J(θ) =
∑

s∈S

µE (s)(πθ(s)− πE (s))2

(µE – estimate of the expert’s stationary distribution,
πθ – optimal policy for θ, πE – expert’s policy).

I Natural gradient techniques can be applied to improve
performance.

Sequential Forecasting Online RL

IRL – Experiments

Expert trajectories

Low error region

Direct policy imitation

Low error region

IRL

Sequential Forecasting Online RL

Reinforcement Learning

Markov decision process (MDP) M:

S . . . state space

A . . . action space

r(s, a) . . . reward in [0, 1] for choosing

action a in state s

p(s ′|s, a) . . . transition probability to state s ′

when choosing action a in state s ′

π∗ : S → A . . . optimal policy

RT (π) =
T
∑

t=1

r(st , at) . . . total reward of policy π after T steps,

st are the (random) states visited by π,

and at are the chosen actions

Sequential Forecasting Online RL

Undiscounted online regret

We are interested in the online regret of a strategy π:

∆T (π) := RT (π∗)− RT (π)

Sequential Forecasting Online RL

Undiscounted online regret

We are interested in the online regret of a strategy π:

∆T (π) := RT (π∗)− RT (π)

Discounted regrets are not very useful for online analysis:
For γ ∈ [0, 1),

∞
∑

t=0

γtr(s∗t , a∗t)−
∞
∑

t=0

γtr(st , at) = O(1).

Sequential Forecasting Online RL

Bounds on the regret

For S = |S| states and A = |A|, our UCRL algorithm achieves

∆T (UCRL) = Õ
(

DS
√

AT
)

,

where D denotes the diameter of the MDP: This is the time, such
that for any pairs of states s1, s2 ∈ S there is a policy which moves
from s1 to s2 within D steps on average:

D = max
s1,s2

min
π

E [T (s2|π, s1)]

Sequential Forecasting Online RL

Bounds on the regret

For S = |S| states and A = |A|, our UCRL algorithm achieves

∆T (UCRL) = Õ
(

DS
√

AT
)

,

where D denotes the diameter of the MDP: This is the time, such
that for any pairs of states s1, s2 ∈ S there is a policy which moves
from s1 to s2 within D steps on average:

D = max
s1,s2

min
π

E [T (s2|π, s1)]

Matching lower bound:
There are MDPs such that for any algorithm

∆T = Ω
(√

DSAT
)

.

Sequential Forecasting Online RL

Relation to other work: PAC-like bounds

I E 3 by Kearns and Singh (1998):
After poly(1/ε, S , A, T ε

mix
) steps the per-trial regret is at

most ε.

I Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not ε-optimal:

#{t : at 6= aε
t} = Õ

(

S2A(T ε
mix/ε)3

)

Sequential Forecasting Online RL

Relation to other work: PAC-like bounds

I E 3 by Kearns and Singh (1998):
After poly(1/ε, S , A, T ε

mix
) steps the per-trial regret is at

most ε.

I Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not ε-optimal:

#{t : at 6= aε
t} = Õ

(

S2A(T ε
mix/ε)3

)

I Our result gives

#{t : at 6= aε
t} = Õ

(

D2S2A/ε2
)

.

Sequential Forecasting Online RL

Relation to other work: PAC-like bounds

I E 3 by Kearns and Singh (1998):
After poly(1/ε, S , A, T ε

mix
) steps the per-trial regret is at

most ε.

I Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not ε-optimal:

#{t : at 6= aε
t} = Õ

(

S2A(T ε
mix/ε)3

)

I Our result gives

#{t : at 6= aε
t} = Õ

(

D2S2A/ε2
)

.

I T ε
mix

is the number of steps such that for any policy π its
actual per-trial reward is ε-close to the expected per-trial
reward.

Sequential Forecasting Online RL

Relation to other work: PAC-like bounds

I E 3 by Kearns and Singh (1998):
After poly(1/ε, S , A, T ε

mix
) steps the per-trial regret is at

most ε.

I Analysis of Rmax by Kakade (2003):
Bound on the number of actions which are not ε-optimal:

#{t : at 6= aε
t} = Õ

(

S2A(T ε
mix/ε)3

)

I Our result gives

#{t : at 6= aε
t} = Õ

(

D2S2A/ε2
)

.

I T ε
mix

is the number of steps such that for any policy π its
actual per-trial reward is ε-close to the expected per-trial
reward.

I For small ε, T ε
mix

> D/ε.

Sequential Forecasting Online RL

Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.

Sequential Forecasting Online RL

Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.

I We get

E [∆T (UCRL)] = O

(

D2S2A

g2
log T

)

.

Sequential Forecasting Online RL

Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.

I We get

E [∆T (UCRL)] = O

(

D2S2A

g2
log T

)

.

I Burnetas, Katehakis, 1997, Tewari, Bartlett, NIPS 2007:

E [∆T] = O

(

D2
max|S ||A|

g2
log T

)

Sequential Forecasting Online RL

Relation to other work: log T bounds

Assume that there is a gap g between the average per-trial reward
of the optimal and the 2nd best policy.

I We get

E [∆T (UCRL)] = O

(

D2S2A

g2
log T

)

.

I Burnetas, Katehakis, 1997, Tewari, Bartlett, NIPS 2007:

E [∆T] = O

(

D2
max|S ||A|

g2
log T

)

I Main difference (recall D = maxs1,s2 minπ E [T (s2|π, s1)]):

Dmax = max
s1,s2

max
π

E [T (s2|π, s1)]

Sequential Forecasting Online RL

The UCRL algorithm:
Upper Confidence Reinforcement Learning

I The algorithm runs in rounds k = 1, 2, . . ., each starting at
some time tk .

I A new round starts when the occurrences of some state-action
pair (s, a) have doubled,

N(s, a; tk+1) = 2 · N(s, a; tk).

I Within a round, a fixed policy π̃k : S → A is used.

I The policy π̃k is chosen such that it maximizes the expected
reward for the best (maximal reward) plausible MDP, in
respect to the current empirical estimates p̂(·|s, a; tk).

I An MDP M̃ is plausible if

||p̃(·|s, a; tk)− p̂(·|s, a; tk)||1 ≤
√

const · S
N(s, a; tk)

log tk .

Sequential Forecasting Online RL

Details of UCRL: The bias λ

The policy π̃k can be calculated quite quickly by value iteration:

Sequential Forecasting Online RL

Details of UCRL: The bias λ

The policy π̃k can be calculated quite quickly by value iteration:

I In discounted reinforcement learning we have Bellman updates

V (s)← max
a

[

r(s, a) + γ
∑

s′

V (s ′)p(s ′|s, a)
]

.

Sequential Forecasting Online RL

Details of UCRL: The bias λ

The policy π̃k can be calculated quite quickly by value iteration:

I In discounted reinforcement learning we have Bellman updates

V (s)← max
a

[

r(s, a) + γ
∑

s′

V (s ′)p(s ′|s, a)
]

.

I In undiscounted reinforcement learning we can use
bias updates

λ(s)← max
a

[

r(s, a) +
∑

s′

λ(s ′)p(s ′|s, a)
]

Sequential Forecasting Online RL

Details of UCRL: The bias λ

The policy π̃k can be calculated quite quickly by value iteration:

I In discounted reinforcement learning we have Bellman updates

V (s)← max
a

[

r(s, a) + γ
∑

s′

V (s ′)p(s ′|s, a)
]

.

I In undiscounted reinforcement learning we can use
bias updates

λ(s)← max
a

[

r(s, a) +
∑

s′

λ(s ′)p(s ′|s, a)
]

and normalization

ρ ← min
s′

λ(s ′)

λ(s) ← λ(s)− ρ.

Sequential Forecasting Online RL

Details of UCRL: The bias λ

The policy π̃k can be calculated quite quickly by value iteration:

I In discounted reinforcement learning we have Bellman updates

V (s)← max
a

[

r(s, a) + γ
∑

s′

V (s ′)p(s ′|s, a)
]

.

I In undiscounted reinforcement learning we can use
bias updates

λ(s)← max
a

[

r(s, a) +
∑

s′

λ(s ′)p(s ′|s, a)
]

and normalization

ρ ← min
s′

λ(s ′)

λ(s) ← λ(s)− ρ.

I The bias update converges (for non-periodic MDPs) to λ(·)
with 0 ≤ λ(s) ≤ D.

Sequential Forecasting Online RL

Details of UCRL: Bias and regret

I The bias λ(·) solves the equation

λ(s) = max
a

[

r(s, a)− ρ∗ +
∑

s′

λ(s ′)p(s ′|s, a)
]

where ρ∗ is the optimal per-trial reward.

I The advantage of starting in state s over starting in state s ′

— followed by an infinite number of trials — is given by
λ(s)− λ(s ′).

Sequential Forecasting Online RL

Details of UCRL: Bias and regret

I The bias λ(·) solves the equation

λ(s) = max
a

[

r(s, a)− ρ∗ +
∑

s′

λ(s ′)p(s ′|s, a)
]

where ρ∗ is the optimal per-trial reward.

I The advantage of starting in state s over starting in state s ′

— followed by an infinite number of trials — is given by
λ(s)− λ(s ′).

I For each time a non-optimal action a 6= a∗ = a∗(s) is chosen,
a regret δ is suffered,

δ = r(s, a∗)− r(s, a) +
∑

s′

λ(s ′)[p(s ′|s, a∗)− p(s ′|s, a)]

≤ r(s, a∗)− r(s, a) + D ||p(·|s, a∗)− p(·|s, a)||1

Sequential Forecasting Online RL

Details of UCRL: Analysis

We compare per-trial rewards ρ̃k and ρk for the chosen policies π̃k

in the optimistic MDP M̃k and in the true MDP, resp.

E [∆T] ≈ ρ∗T −
∑

k

ρk(tk+1 − tk)

Sequential Forecasting Online RL

Details of UCRL: Analysis

We compare per-trial rewards ρ̃k and ρk for the chosen policies π̃k

in the optimistic MDP M̃k and in the true MDP, resp.

E [∆T] ≈ ρ∗T −
∑

k

ρk(tk+1 − tk)

≤
∑

k

(ρ̃k − ρk)(tk+1 − tk)

Sequential Forecasting Online RL

Details of UCRL: Analysis

We compare per-trial rewards ρ̃k and ρk for the chosen policies π̃k

in the optimistic MDP M̃k and in the true MDP, resp.

E [∆T] ≈ ρ∗T −
∑

k

ρk(tk+1 − tk)

≤
∑

k

(ρ̃k − ρk)(tk+1 − tk)

≤
∑

k

tk+1−1
∑

t=tk

D ||p̃(·|st , at)− p(·|st , at)||1

Sequential Forecasting Online RL

Details of UCRL: Analysis

We compare per-trial rewards ρ̃k and ρk for the chosen policies π̃k

in the optimistic MDP M̃k and in the true MDP, resp.

E [∆T] ≈ ρ∗T −
∑

k

ρk(tk+1 − tk)

≤
∑

k

(ρ̃k − ρk)(tk+1 − tk)

≤
∑

k

tk+1−1
∑

t=tk

D ||p̃(·|st , at)− p(·|st , at)||1

=
∑

k

tk+1−1
∑

t=tk

Õ

(

D

√

S

N(st , at ; tk)

)

Sequential Forecasting Online RL

Details of UCRL: Analysis

We compare per-trial rewards ρ̃k and ρk for the chosen policies π̃k

in the optimistic MDP M̃k and in the true MDP, resp.

E [∆T] ≈ ρ∗T −
∑

k

ρk(tk+1 − tk)

≤
∑

k

(ρ̃k − ρk)(tk+1 − tk)

≤
∑

k

tk+1−1
∑

t=tk

D ||p̃(·|st , at)− p(·|st , at)||1

=
∑

k

tk+1−1
∑

t=tk

Õ

(

D

√

S

N(st , at ; tk)

)

=
∑

s,a

Õ
(

D
√

S · N(s, a; T)
)

= Õ
(

DS
√

AT
)

Sequential Forecasting Online RL

Future research

Sequential Forecasting Online RL

Future research

I Tracking changes:
Allow changes in the MDP which need to be picked up by the
learning algorithm.

Sequential Forecasting Online RL

Future research

I Tracking changes:
Allow changes in the MDP which need to be picked up by the
learning algorithm.

I Continuous state/action spaces:
I Difficult in a general setting
I Progress for simplified (bandit) setting
I Extend this to more interesting settings

Sequential Forecasting Online RL

Future research

I Tracking changes:
Allow changes in the MDP which need to be picked up by the
learning algorithm.

I Continuous state/action spaces:
I Difficult in a general setting
I Progress for simplified (bandit) setting
I Extend this to more interesting settings

I Autonomous rewards:
Design autonomous reward functions which drive both the
consolidation and the extension of learned knowledge,
mimicking cognitive behavior.

Sequential Forecasting Online RL

