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Project Goals

• Optimization methods for multi-task learning

• Theoretical investigations (convergence, error analysis, approximation)

• Implementation and demonstration

• Develop at least one real application

(conjoint analysis, bioinformatics, robot learning)

• Lecture notes for a course on convex optimization
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Achieved Results

• Method for learning shared features across tasks

• Conjoint analysis application

• Matlab implementation

• Analysis of the method (convergence, non-linear extensions,

approximation)
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Learning Multiple Tasks Simultaneously

• By a task we mean a real-valued function (for regression / classification)

• Learning multiple related tasks vs. learning independently

• Few data per task; pooling data across related tasks

Example 1: predict users’ preferences to products

Example 2: object detection in computer vision

3



Approach

• Learn each task by L2-norm regularization

Min
w∈IRd

m
∑

i=1

(w⊤xi − yi)
2 + γw⊤D−1w, γ > 0

• Further minimize over ‘structure matrix’ D:

Min
D∈D

T
∑

t=1

(

Min
w∈IRd

m
∑

i=1

(w⊤xti − yti)
2 + γw⊤D−1w

)

• D: subset of positive definite matrices with bounded trace
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Alternate Minimization Algorithm

• Alternating minimization over W (supervised learning) and D

(unsupervised “correlation” of tasks).

Initialization: set D = 1
d
Id×d

while convergence condition is not true do
for t = 1, . . . , T

set wt = arg min
w∈IRd

m
∑

i=1

(w⊤xti − yti)
2 + γ w⊤D−1w

end for

set D = (WW⊤)
1
2

trace(WW⊤)
1
2
, where W = [w1, . . . , wT ]

end while
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Conjoint Analysis Experiment

• Consumers’ ratings of products [Lenk et al. 1996]

• 180 persons (tasks)

• 8 PC models (training examples); 4 PC models (test examples)

• 13 binary input variables (RAM, CPU, price etc.) + bias term

• Integer output in {0, . . . , 10} (likelihood of purchase)
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Conjoint Analysis Experiment

Test error
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• Performance improves with more tasks (for independent tasks, error

= 16.53)

• A single most important feature shared by all persons
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Interpretation 1: Spectral Regularization

Min
D∈D

T
∑

t=1

(

Min
w∈IRd

m
∑

i=1

(w⊤xti − yti)
2 + γw⊤D−1w

)

Rewrite above problem as a matrix regularization one:

Minimize
W∈IRd×T , D∈D

Error(W ) + γ trace(W⊤D−1W )

where W =



w1 . . . wT



, Error(W ) =
T
∑

t=1

m
∑

i=1

(w⊤

t xti − yti)
2
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Spectral Regularization

Lemma: if D = {D ≻ 0, trace D ≤ 1} then

inf
D∈D

trace(W⊤D−1W ) = ‖W‖2
1

with ‖W‖1 the L1 norm of the singular values of W

• Extension: if F is a spectral function, then inf
D∈D

trace(W⊤F (D)W )

is a spectral function of the covariance matrix WW⊤

• Infimizer may be analytically computed
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Interpretation 2: Learning Common Features

Writing D = UΛU⊤, with U orthogonal and A = U⊤W and minimizing

over Λ, our original approach reduces to

Minimize
A, U⊤U=I

Error(UA) + γ ‖A‖2
2,1

• Interpretation: learn a small set of common features shared by the tasks

• if U = I (fixed), method selects important variables shared by tasks
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Effect of (2, 1)-Norm

• Compare matrices favoured by different norms:
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Equivalent problem

In summary, the following problems are equivalent (here p ∈ (0, 2])

Minimize
W,D∈D

Error(W ) + γ trace(WD1−2
pW ) (1)

Minimize
W

Error (W ) + γ ‖W‖2
p (2)

Minimize
A, U⊤U=I

Error(UA) + γ ‖A‖2
2,p (3)

• (1) is our original proposal and is jointly convex

• (2) is also convex but may be more difficult to solve (next slide)

• (3) helps us gain intuition on our proposal but is non convex
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Computational Cost

Reg.
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• Compare computational cost of alternating minimization vs. gradient

descent (on problem (2)), for p = 1.5

• Curves for different learning rates are shown
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Computer Survey Experiment

RMSE
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• Performance using Lp spectral regularizers

• Trace norm (p = 1) is best among the norms

• A non-convex regularizer (p < 1) does even better
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Computer Survey Experiment
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• The eigenvectors of D are the features U solving problem (3)

• The most important feature weighs technical characteristics vs. price
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Additional Results

• Algorithm (with some perturbation) converges to the optimal solution

[AEP]

• Conditions for joint convexity [AMPY]

• Nonlinear extension via kernels [AEP]

• Can be used for transfer learning

• Extension to tasks with attributes [ABEV]
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Additional Results (cont.)

• Improves over hierarchical Bayes (which also learns a matrix D

using Bayesian inference but with more elaborate priors) [EPT-08]

• More general regularizers can be considered, e.g.

T
∑

t=1

(wt − w̄)⊤D−1(wt − w̄)

• Universal multi-task kernels [CMPY-08]
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Future work

Begun new projects on this topics (ongoing EPSRC grant)

• Different tasks’ domains

• Generalization error bounds

• Consider temporal data

• Online learning
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