
An Efficient Implementation of Hubness-Aware
Weighting Using Cython

Krisztian Buza

BioIntelligence Group
Department of Mathematics-Informatics
Sapientia Hungarian University of Transylvania
Targu Mures, Romania

buza@biointelligence.hu

Nearest Neighbor Classification

● Simple, intuitive, explainable
● Works reasonable well with

moderate amount of data

BUT

● it is affected by the detrimental
effect of bad hubs

number of capital letters

number of
‘$’ signs

Example: spam detection

Hubness

Hubness

Hubness

0
0

2
3

0

Hubness

0
0

2
3

0

N(x1)=0

Hubness

0
0

2
3

0

N(x)

count

0 1 2 3

3

1 1

Hubness

0
0

2
3

0

N(x)

count

0 1 2 3

3

1 1

The distribution of N(x) with 𝑘 = 5
nearest neighbors in case of the
Spambase dataset

Some Prominent Applications of Hubness-Aware
Machine Learning Techniques

● Time series classification
● Classification of imbalanced data
● Clustering
● Collaborative Filtering
● Classification of gene expression data
● Drug-target interaction prediction
● Person identification based on keystroke dynamics
● Hubness-aware ensembles
● Hubness-aware weighting for neural networks
● …

Hubness-Aware Weighting

● an instance 𝑥 is a bad neighbor of another instance 𝑥′ if 𝑥 is one of the 𝑘-nearest
neighbors of 𝑥′ and their class labels are different

● = how many times an instance 𝑥 appears as bad neighbor of other instances
● normalized bad hubness score:

 where
 = mean of
 = standard deviation of

● weighted 𝑘-nearest neighbor classification, weights:

Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. 2009. Nearest neighbors in
high-dimensional data: The emergence and influence of hubs. In Proceedings of the 26th Annual
International Conference on Machine Learning. 865–872.

Experiments

● We implemented hubness-
aware weighting both in
Python and Cython

● Experiments on the
Spambase dataset

● The Cython-based version
is much faster while both
have the exactly same
accuracy number of training instances

tim
e

(s
)

Conclusions & Outlook

● Implementation of computationally expensive functions in Cython may speed
up various calculations (code is compiled, less time is needed for type
inference when the code is executed)

● Try out our code yourself:
https://github.com/kr7/cython/

