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The Problem — Factor Analysis

• J observations of vectors d1, . . . , dJ , dj ∈ Rnf ;

• Assume:
dj = Asj + εj , sj ∈ Rns ,

where A is a nf × ns matrix (the mixing matrix);

• Assume εj ∼ N(0, diag(τ−1
1 , . . . , τ−1

nf
));

• Goal: observe the dj and then infer A and recover
(“separate”) the sj ;



Cosmic Microwave Background (CMB)

• Discovered by accident in 1964;

• By 1970’s agreed to be an image of the first scattering of
EM radiation at recombination ≈ 300,000 years after Big
Bang;

• Of great interest as an observation of the state of the
early universe:

• In particular it is remarkably uniform;
• But accurate measurement of the small anisotropies place

strong restrictions on theories of big bang, galaxy formation
etc.;

• Cosmic expansion ⇒ radiation has cooled to 2.7K
(microwave);



CMB Spectrum — Black Body



Inferring the CMB — Source Separation



Separating the Cosmic Microwave
Background

• dj , are observations at J pixels over the sky at nf

microwave frequencies ν1, . . . , νnf
;

• Upcoming data (Planck satellite) will have J ≈ 107, nf = 9 at
frequencies from 30 to 857 GHz;

• sj are the sources that make up the microwave received by
the satellite:

• One of these sources is the CMB (source 1);
• Other important ones are synchrotron radiation and galactic

dust;
• There are others.... is ns known?
• A lot is known from physics about the properties of these

sources e.g. their spectrum, mean, variance etc;

• A is not known but the physics tell us a lot about it;

• A lot of “prior” information ⇒ a Bayesian approach looks
promising.



Model

We can put all the dj and sj into matrices:

D = {dij | i = 1, . . . , nf , j = 1, . . . , J};
S = {skj | k = 1, . . . , ns , j = 1, . . . , J};



Model for Sources

• Each source Sk = {skj | j = 1, . . . , J} is an iid Gaussian
mixture with an unknown number mk of components.

• Define µk = (µk1, . . . , µkmk
), tk = (tk1, . . . , tkmk

) and
pk = (pk1, . . . , pkmk

) to be the mixture component means,
precisions and weights for source k ;

• So

p(Sk |µk , tk , pk)

=
J∏

j=1

mk∑
a=1

pka

√
tka
2π

exp
(
−0.5tka(skj − µka)2

)
, skj ∈ R.

• Let µ = (µ1, . . . , µns ), t = (t1, . . . , tns ), p = (p1, . . . , pns )
and m = (m1, . . . ,mns ) denote the vectors of all mixture
means, precisions, weights and no. of components for all
sources.



Model for Mixing Matrix A

• Both A and s unknown ⇒ solution up to a constant in
each column (source) of A;

• Hence can arbitrarily fix one value in each column of A;

• Aik interpreted as the response of the detector at
frequency νi to source k ;

• The physics tells us a lot about what this should be for
each source;

• The CMB is black body radiation at T0 = 2.725K, so
response at νi is

Ai1 =

(
hνi

kT0

)2
ehνi/kT0

(ehνi/kT0 − 1)2
,

h is Planck constant, k is Boltzmann’s constant.



Model for Mixing Matrix A

• For other sources, physical argument to say that
approximately we can say:

Aik =

(
νi

ν0,k

)θk
,

for a reference frequency ν0,k and parameter θk ;

• So one free parameter θk per column of A;

• So A parameterised by (ns − 1) dimensional θ;



Priors

• We’ve parameterised the model in terms of:
• Source mixture means, precisions, weights and no. of

components: µ, t, p, m;
• Mixing matrix parameters θ;
• Measurement noise precisions τ ;

• We put the usual conjugate priors on these:
• Normals on the mixture means;
• Gammas on the mixture precisions;
• Dirichlets on the mixture weights;
• Geometrics on the no. of mixture components;
• Gammas on the noise precisions;
• For θ, physical arguments put quite tight bounds on their

values — we put normal priors with high probability between
these bounds;

• Our existing knowledge can put very informative priors on
the source mixture parameters, and on the noise
precisions;

• These should greatly help the inference.



Sampling from the Posterior Distribution

• Can be done by Gibbs sampling;
• Update parameters in blocks where possible:

• Mixture means, precisions and weights updated jointly from
their full conditional for each source by a Gibbs sampler;

• No. of mixture components for each source sampled by the
usual Richardson and Green (JRSS B, 1997) reversible jump
move;

• Components of θ updated jointly with their corresponding
source by a Metropolis move (e.g. (θk ,Sk));

• Full conditional of each source at each pixel skj is a mixture of
Gaussians;

• Better: full conditional of vector of sources at each pixel S·j is
a multivariate mixture of Gaussians;

• Full conditional of noise precisions are gamma;

• See pending paper for the details!!



Example 1: simulated data

• Three sources (simulated Gaussian mixtures and Gaussian
MRFs) at five channels on a 256× 256 grid;

• Mixing matrix A generated using reasonable values from
CMB, synchrotron and dust at the 5 COBE frequencies,
giving:

A =


0.9770 32.8359 0.0990
0.9514 10.8140 0.2090
0.8823 2.8133 0.5107
0.7770 1.0000 1.0000
0.6044 0.3544 1.9256

 .



Example 1: simulated data

Figure: Simulated values of the 3 sources, from left to right, assigned to
be CMB, synchrotron and dust.



Example 1: simulated data

Figure: Histograms of the simulated values of the 3 sources, from left to
right: CMB, synchrotron and dust.



Example 1: simulated data

Figure: Resulting observed signal at two frequencies: 30 GHz (left) and
143 GHz (right).



Example 1: simulated data

Figure: The posterior mean reconstruction of the CMB (left), the true
(centre) with a scatter plot of true vs posterior mean (right).



Example 1: simulated data

Figure: On the left, the posterior distribution of the CMB at pixel
(200,20). The true value is indicated by the vertical line. On the right,
the marginal posterior distribution of the CMB, with the histogram of
true values for comparison.



Example 1: simulated data

Figure: The posterior mean reconstruction of synchrotron (left), the true
(centre) with a scatter plot of true vs posterior mean (right).



Example 1: simulated data

Figure: The posterior mean reconstruction of dust (left), the true
(centre) with a scatter plot of true vs posterior mean (right).



Example 1: simulated data

Figure: The fitted marginal posterior distribution of synchrotron (left)
and dust (right), along with the histogram of their true values for
comparison.



Example 2: simulated data with 9
channels

• Same 5 channels as example 1 with 4 more at higher
frequencies;

•

A =



0.9770 32.8359 0.0990
0.9514 10.8140 0.2090
0.8823 2.8133 0.5107
0.7770 1.0000 1.0000
0.6044 0.3544 1.9256
0.2194 0.1057 5.3763
0.0294 0.0258 11.3455
0.0019 0.0073 17.5890
0.0001 0.0020 21.9472


,

• Higher frequencies give much higher to dust.



Example 2: simulated data with 9
channels

Figure: The posterior mean reconstruction of the CMB (left), the true
(centre) with a scatter plot of true vs posterior mean (right).



Example 2: simulated data with 9
channels

Figure: On the left, the posterior distribution of the CMB at pixel
(200,20). The true value is indicated by the vertical line. On the right,
the marginal posterior distribution of the CMB, with the histogram of
true values for comparison.



Example 2: simulated data with 9
channels

Figure: The posterior mean reconstruction of synchrotron (left), the true
(centre) with a scatter plot of true vs posterior mean (right).



Example 2: simulated data with 9
channels

Figure: The posterior mean reconstruction of dust (left), the true
(centre) with a scatter plot of true vs posterior mean (right).



Example 2: simulated data with 9
channels

Figure: The fitted marginal posterior distribution of synchrotron (left)
and dust (right), along with the histogram of their true values for
comparison.



Real WMAP Data

• Three patches of 512× 512 pixels at 5 channels;

• Fit 4 sources: CMB, synchrotron, dust and free-free
emission;

• The spectral index of free-free emission is assumed to be
−2.19.



Patch 1 — Data



Patch 1 — Posterior mean of sources



Patch 1 — Posterior standard deviation of
sources



Patch 1 — Model fit: observed
temperature vs. posterior mean

temperature



Patch 2 — Data



Patch 2 — Posterior mean of sources



Patch 2 — Posterior standard deviation of
sources



Patch 2 — Model fit: observed
temperature vs. posterior mean

temperature



Patch 3 — Data



Patch 3 — Posterior mean of sources



Patch 3 — Posterior standard deviation of
sources



Patch 3 — Model fit: observed
temperature vs. posterior mean

temperature



Posterior mean of spectral indices

Synchrotron Dust
Patch 1 −2.61 3.40
Patch 2 −2.84 1.34
Patch 3 −2.64 0.51

Dust spectral index varies considerably from patch to patch!!
Note: free-free spectral index assumed to be −2.19 (as in
Eriksen et al., 2006).



Future Work

• Dependent sources (CMB vs. galactic vs. extra-galactic)
by mixtures of multivariate Gaussians;

• Analysis of entire WMAP data;

• Separation at resolution of shortest wavelength;

• Planck data from 2008.


