Analytical Challenges in Determining the Origin of Olive Oil using ⁸⁷Sr/⁸⁶Sr isotope ratios

Tea Zuliani, Ekaterina Epova, Emna Nasr, Julien Barre, Olivier X. Donard, Filip Pošćić , Maja Jukić Špika, Slavko Perica and Martina Furdek Turk

2nd ISO-FOOD Symposium, April, 24th-26th, Portorož, Slovenia

Outline

Introduction

- ≻Olive oil
- >Adulteration
- Sr from soil to the oil
- > Experimental work and discussion of results
- > Linking Sr isotope ratio between oil and soil
- Conclusions

Olive oil

- important ingredient of the Mediterranean diet
- appreciation for nutritional and sensory properties
- low production and higher price compared to other oils
- →most adulterated food product
- PDO olive oil → high price

News	Books & Culture	Fiction & Poetry	Humor & Cartoons	Magazine	Crossword	Video
news	books & Guiture	FIGUOI & FOELLY	numor & Gartoons	magazine	Crossword	videc

PAGE-TURNER

D

~

OLIVE OIL'S DARK SIDE

By Sally Errico February 7, 2012

In the August 13, 2007, issue of the magazine, Tom Mueller wrote about <u>corruption in the olive-oil trade. By the</u> late nineteen-nineties, olive oil—often cut with cheaper oils, such as hazelnut and sunflower seed—was the most adulterated agricultural product in the European Union. The E.U.'s anti-fraud office established an olive-oil task force, "yet fraud remains a major international problem," Mueller wrote. "Olive oil is

NEW YORKER

far more valuable than most other vegetable oils, but it is costly and time-consuming to produce—and surprisingly easy to doctor."

NEW YORKER

Books & Culture Fiction & Poetry News Humor & Cartoons

ct in the

task force.

ernational

Olive oil

- important ingredient of the Mediterranean diet
- appreciation for nutritional and sensory properties
- low production and higher price compared to other oils
- most adulterated food product
- PDO olive oil → high price

PAGE-TURNER

OLIVE OIL'S DARK SIDE

By Sally Errico February 7, 2012

In the August 13, 2007, issue of the magazine, Tom Mueller wrote about corruption in the olive-oil trade. By the late nineteen-nineties, olive oil-often cut with cheaper oils, such as hazelnut NEW YORKER most

videoanti-fraud Rooks & Culture

Olive-oil fraud continues today, though modern governments are often less thorough and effective than the Romans at preventing it. Olive oil has historically been one of the most frequently adulterated products in the European Union, whose profits, one E.U. anti-fraud investigator told me, have at times been "comparable to cocaine trafficking, with none of the risks." In America, olive-oil adulteration, sometimes with cut-rate soybean and seed oils, is widespread, but olive oil is not tested for by the F.D.A.-F.D.A. officials tell me their resources are far too limited, and the list of responsibilities far too long, to police the olive-oil trade.

Modern olive-oil production has changed since the Roman times, too. Where is its future headed?

Two diametrically opposed trends exist in the olive-oil business. In the first, toward high-quality olive oil, new milling technologiesstainless steel mills, high-speed centrifuges, temperature- and oxygen-controlled storage tanks-are making it possible to produce the best extra-virgin olive oils in history: fresh, complex, and every bit as varied as wine varietals. (There are about seven hundred different kinds of olives.) Consumer demand for high-quality olive

ve oil is ther vegetable oils, but it is costly and -and surprisingly easy to doctor."

2nd ISO-FOOD Symposium

3

Olive oil adulteration

- dilution with other vegetable or seeds oils
- mislabelling of the production area

Olive oil adulteration

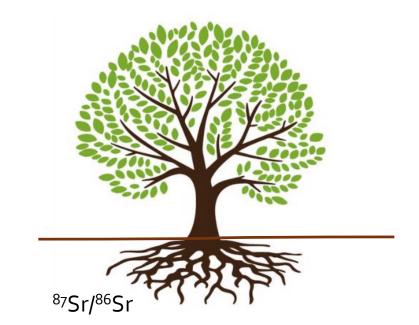
- dilution with other vegetable or seeds oils
- mislabelling of the production area
- analytical approaches for detection of adulteration:

> molecular methods (DNA tracing, ELISA technique, genetic fingerprint analysis)

identification of specific compounds (fatty acid and triacylglycerol composition)

> identification of elemental and/or isotopic composition

Olive oil adulteration


- dilution with other vegetable or seeds oils
- mislabelling of the production area
- analytical approaches for detection of adulteration:

> molecular methods (DNA tracing, ELISA technique, genetic fingerprint analysis)

identification of specific compounds (fatty acid and triacylglycerol composition)

> identification of elemental and/or isotopic composition

C, O, H, N, S and non-traditional elements - Sr

Limitations:

Limitations:

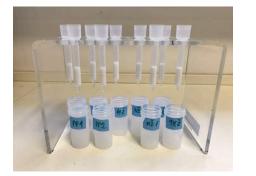
• Low amount of Sr in the olive oil

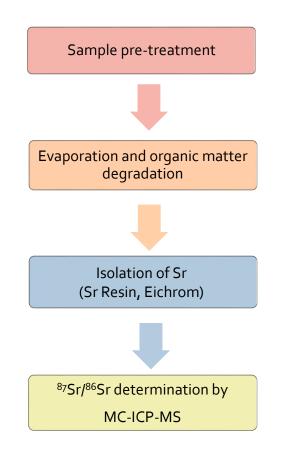
Limitations:

• Low amount of Sr in the olive oil

Reference	Benincasa et al., (2007)	Camin et al., (2010a)	Camin et al., (2010b)	Medini et al., (2015)	Damak et al., (2019)
Preparation method	MW digestion (HNO ₃)	UAE (HNO ₃ + HCI)	UAE (HNO ₃ + HCI + H_2O_2)	MW digestion $(HNO_3 + H_2O_2)$	MW digestion $(HNO_3 + H_2O_2)$
Country	Italy	Italy	Italy	Morocco	Tunisia
Sr (µg kg⁻¹)	< 9.6 - 48.9	0.049 – 13.4	< 0.3	2.0 - 13.9	30 - 37

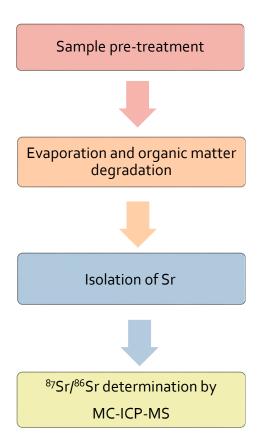
Sensitivity of the MC-ICP-MS (Nu II, dry plasma; optimum: 25 ppb Sr (0.001 %); min: 5 ppb (0.03 %); 1 ppb (0.08 %))

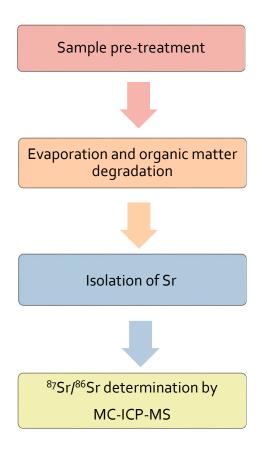

Limitations:


• Low amount of Sr in the olive oil

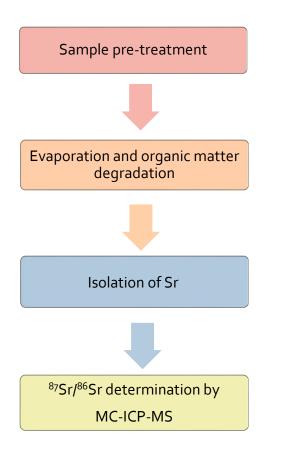
Reference	Benincasa et al., (2007)	Camin et al., (2010a)	Camin et al., (2010b)	Medini et al., (2015)	Damak et al., (2019)
Preparation method	MW digestion (HNO ₃)	UAE (HNO ₃ + HCI)	UAE (HNO ₃ + HCI + H_2O_2)	MW digestion $(HNO_3 + H_2O_2)$	MW digestion $(HNO_3 + H_2O_2)$
Country	Italy	Italy	Italy	Morocco	Tunisia
Sr (µg kg⁻¹)	< 9.6 - 48.9	0.049 – 13.4	< 0.3	2.0 - 13.9	30 - 37

- Sensitivity of the MC-ICP-MS (Nu II, dry plasma; optimum: 25 ppb Sr (0.001 %); min: 5 ppb (0.03 %); 1 ppb (0.08 %))
- Complex matrix



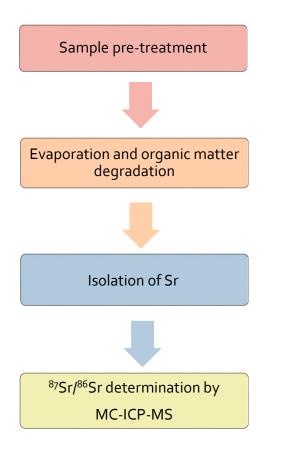


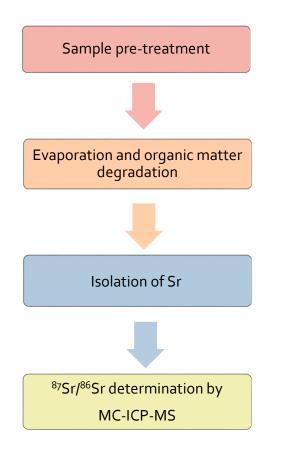
- Microwave digestion of the oil
- Digestion of the oil by H₂SO₄ at high T



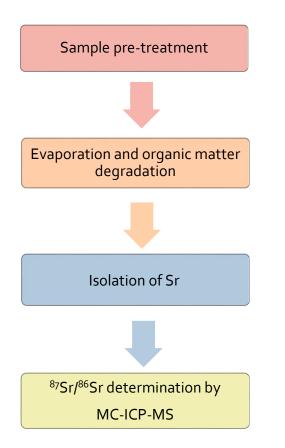
- > Large amounts of H_2SO_4 required;
- Contamination;
- Dangerous procedure.

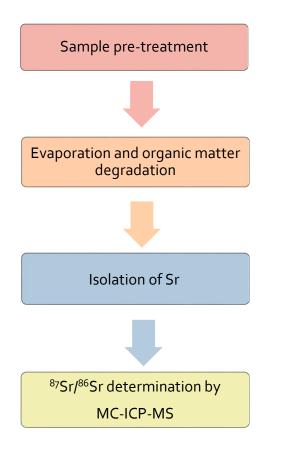
- Microwave digestion of the oil
- Digestion of the oil by H₂SO₄ at high T
- Calcination after destruction of organic matter with H₂O₂ and HNO₃ (hot plate)


- Microwave digestion of the oil
- Digestion of the oil by H_2SO_4 at high T
- Calcination after destruction of organic matter with H₂O₂ and HNO₃ (hot plate)

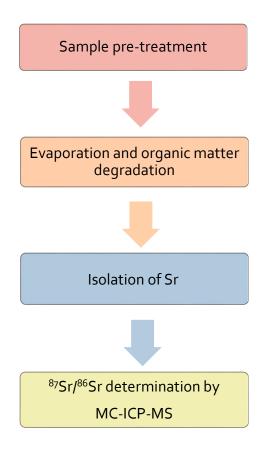


- > Large amounts of H_2O_2 and HNO_3 required;
- After 14 days of "cooking" no change in oil quantity.

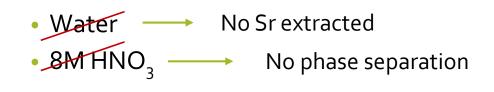


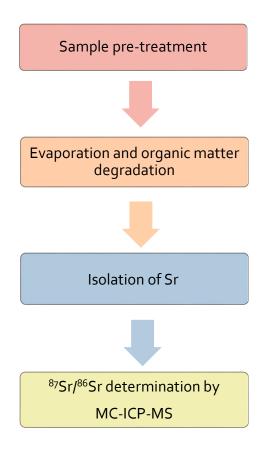

- Microwave digestion of the oil
- Digestion of the oil by H_2SO_4 at high T
- Calcination after destruction of organic matter with H₂O₂ and HNO₃ (hot plate)
- Extraction of Sr:

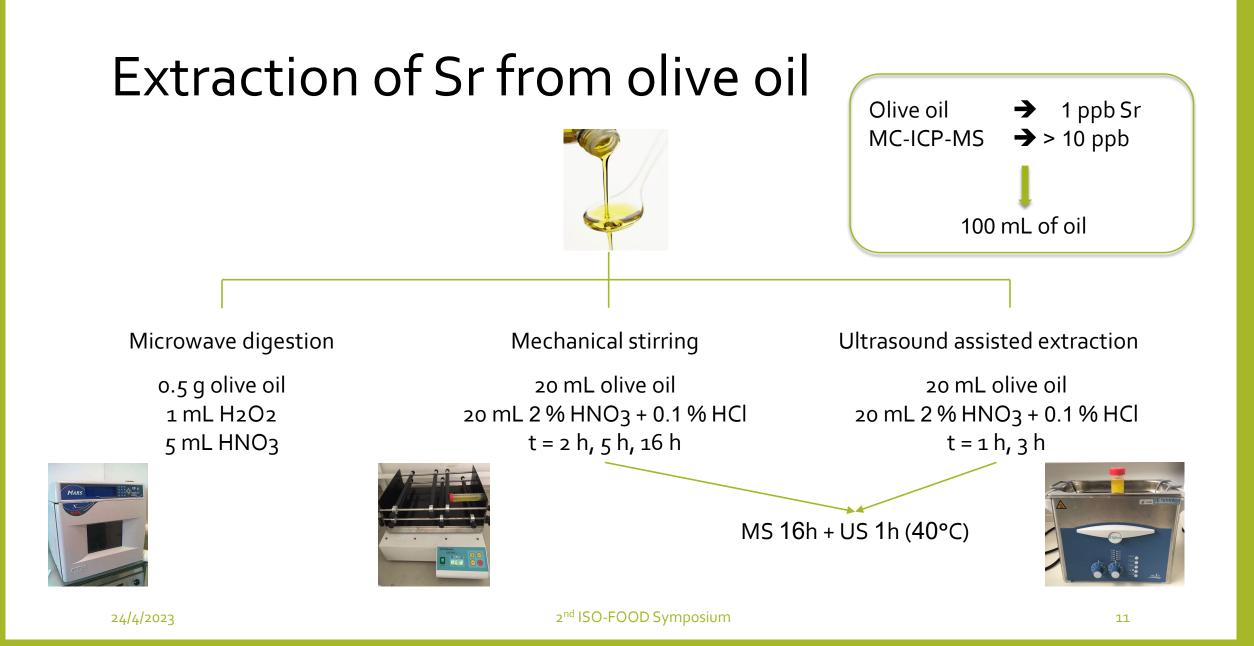
- Microwave digestion of the oil
- Digestion of the oil by H_2SO_4 at high T
- Calcination after destruction of organic matter with H₂O₂ and HNO₃ (hot plate)
- Extraction of Sr:
 - Water

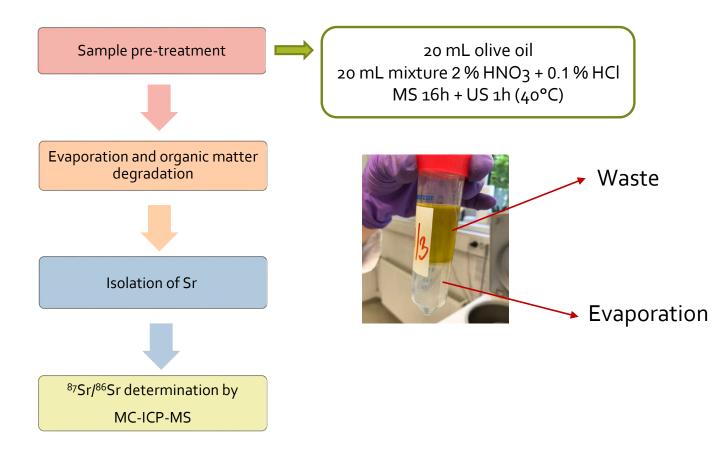


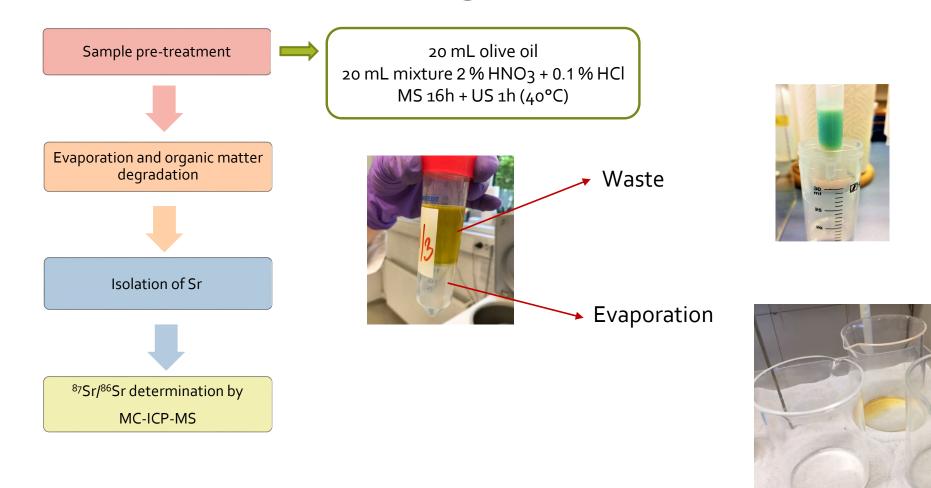
- Microwave digestion of the oil
- Digestion of the oil by H₂SO₄ at high T
- Calcination after destruction of organic matter with H₂O₂ and HNO₃ (hot plate)
- Extraction of Sr:




- Microwave digestion of the oil
- Digestion of the oil by H₂SO₄ at high T
- Calcination after destruction of organic matter with H₂O₂ and HNO₃ (hot plate)
- Extraction of Sr:
 - Water → No Sr extracted
 8M HNO₃


- Microwave digestion of the oil
- Digestion of the oil by H₂SO₄ at high T
- Calcination after destruction of organic matter with H₂O₂ and HNO₃ (hot plate)
- Extraction of Sr:





- Microwave digestion of the oil
- Digestion of the oil by H₂SO₄ at high T
- Calcination after destruction of organic matter with H₂O₂ and HNO₃ (hot plate)
- Extraction of Sr:
 - Water → No Sr extracted
 &M HNO₃ → No phase separation
 2 % HNO₃ + 0.1 % HCl (*ref.: Camin et al., 2010*)

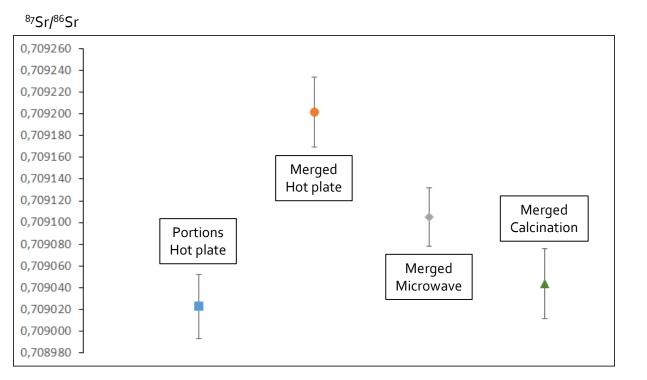
> evaporation of individual portions

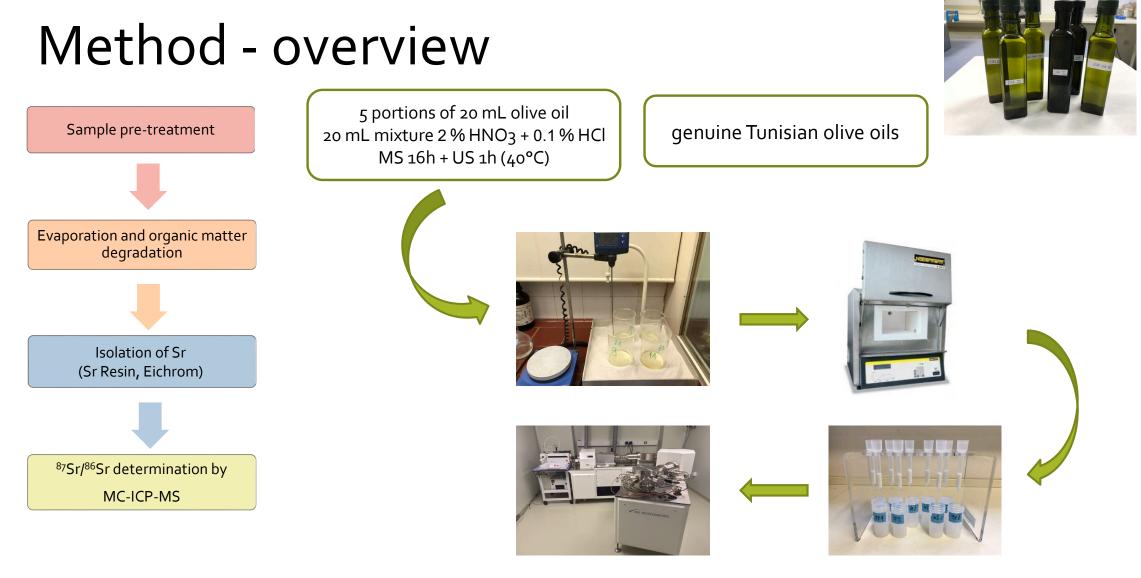
destruction of residue with H₂O₂ and HNO₃; hot plate

> evaporation of merged portions

- destruction of residue with H₂O₂ and HNO₃; hot plate
- > destruction of residue with MW digestion
- > destruction of residue with calcination

Sr/matrix separation on Sr specific resin (300mg)


Sr concentration determination by ICP-MS ⁸⁷Sr/⁸⁶Sr isotope ratio determination by MC-ICP-MS


Individual portions:

 destruction of residue with H₂O₂ and HNO₃, hot plate – extraction recovery > 80 %

Merged portions:

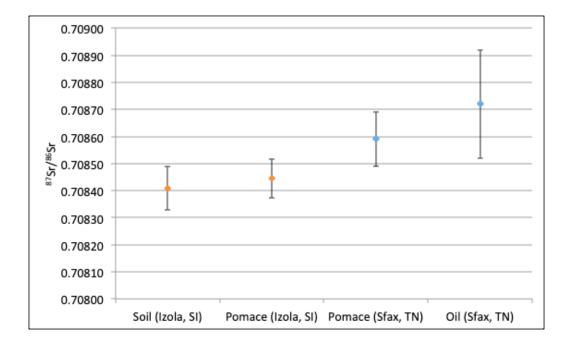
- destruction of residue with H₂O₂ and HNO₃, hot plate – extraction recovery ~ 60 %
- destruction of residue with MW digestion extraction recovery > 70 %
- destruction of residue with calcination extraction recovery > 80 %

24/4/2023

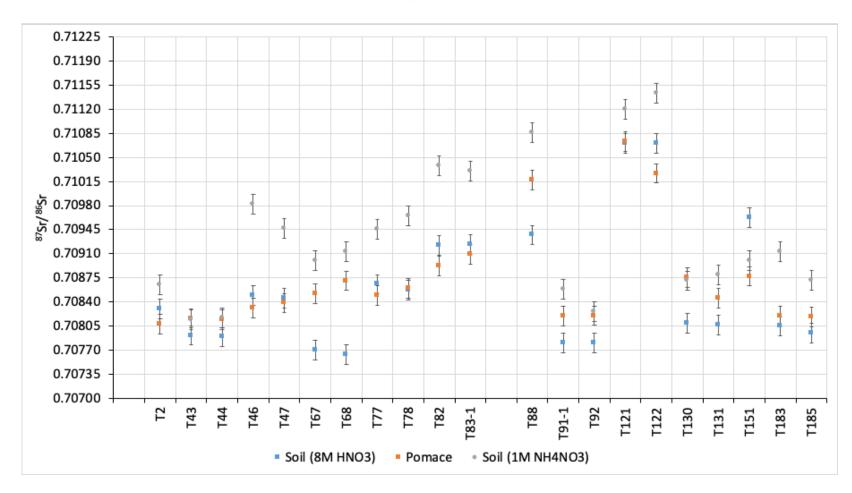
2nd ISO-FOOD Symposium

⁸⁷Sr/⁸⁶Sr in Tunisian olive oil

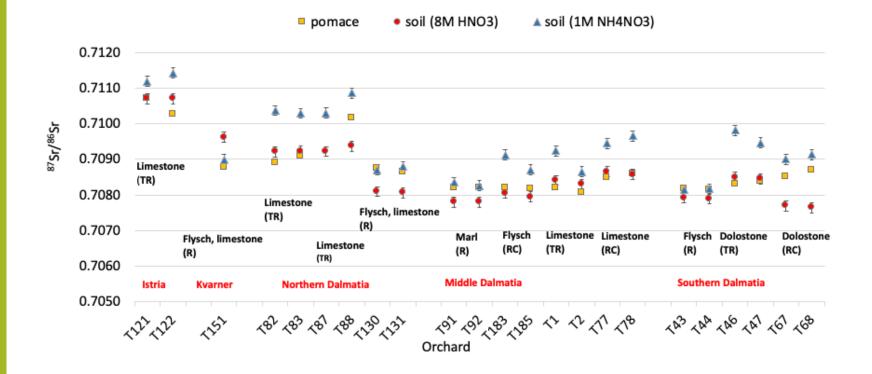
Sample location	⁸⁷ Sr/ ⁸⁶ Sr	2χσ
Sfax	0.70897	0.00024
Kairouan	0.70820	0.00010
Zarzis	0.70920	0.00010

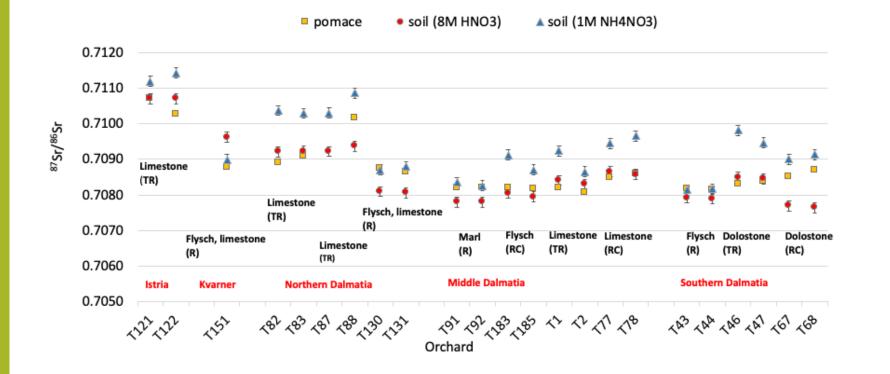

preliminary results

• oil-pomace and pomace-soil pairs from different locations (Izola, SI and Sfax, TN)


preliminary results

• oil-pomace and pomace-soil pairs from different locations (Izola, SI and Sfax, TN)




Samples from Croatia:

- Soil
- Pomace
- Oil

24/4/2023

Soil type and characteristics

Bedrock

- Proximity to the sea
- Soil maintenance
- Orchard treatment

Conclusions

- recognition of olive oil authenticity important issue regarding economic aspects and health risks
- the developed analytical method for ⁸⁷Sr/⁸⁶Sr determination in olive oil can be used for authenticity verifications
 - is limited by the amount of Sr present in the oil
 - reference materials missing
 - validation of the method intercomparison study
- Sr isotope composition in olive oil additional information linking olive oil with the geological characteristics of the production area

Extra-Virgin Olive Oil

European oils, and especially Mediterranean supermarket brands like XXX, routinely fail purity tests (perhaps because of low-grade or stale oil). Try to sample olive oil before buying — real olive oil tastes and smells grassy, fruity, and ripe. One way to avoid fraud: Buy bottles from Chilean, Australian or Californian olive-growing regions. Ref.: www.mensjournal.com

Conclusions

- recognition of olive oil authenticity important issue regarding economic aspects and health risks
- the developed analytical method for ⁸⁷Sr/⁸⁶Sr determination in olive oil can be used for authenticity verifications
 - is limited by the amount of Sr present in the oil
 - reference materials missing
 - validation of the method intercomparison study
- Sr isotope composition in olive oil additional information linking olive oil with the geological characteristics of the production area
- proper selection of extraction methods from soil

Extra-Virgin Olive Oil

European oils, and especially Mediterranean supermarket brands like XXX, routinely fail purity tests (perhaps because of low-grade or stale oil). Try to sample olive oil before buying — real olive oil tastes and smells grassy, fruity, and ripe. One way to avoid fraud: Buy bottles from Chilean, Australian or Californian olive-growing regions. Ref.: www.mensjournal.com

Thank you for your attention!

