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“Big Data” + Digitalization

Staple Foods

Nutrie Maiz Mille Rice Cass Cass Matoo Bean Groun
nts e t ava ava ke s dnut
(per 3 flour Flou fresh flour (plant
100 Unit r ain)
gm)

Kiloca 36 37 36 16 31 34
Energy johes 9 4 0 0 4 225 56
Protein  Grams 7.3 ‘;0' 6.6 1.4 2.6 1.3 i] . 258
Fat Grams 1.8 4.2 0.6 0.3 0.7 0.4 1.2 49.2
Carboh o 79. 72. 79. 38. 76. 62.
ydrate Grams 2 1 3 1 6 31.9 6 16.1
Calciu  Millig 16. 31. 11
# s 3.0 8.0 9.0 0 0 3.0 3.0 92.0

Millig
Iron ramsb 1.1 3.0 0.8 0.3 1.9 0.6 5.1 4.6
Zinc x::g 0.7 1.7 1:2 0.3 0.7 0.1 2.3 3.3
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Abstract b
Keywords | 5 ‘ o 4.4 -4 A
Objectve: T provide a concise summary of field and laboratory methods for the Dy ke mabeds ‘ B |
measurement of dietary intake with particular reference to the asoessment of energy o
and protein intake and to the pitfalls and difficulties that may be encountered in [rieeid
practice when implementing the methods both in the field and under laboratory P
conditions. ‘Habitual |
= g Set reminder v

Review of basic concepts Day-to-day variation
The food intake of individuals is not a satic quaniity y
It varies both in type and amount from day to day, from
week to week and from year to year In general
quantitative measurements of dietary intake can only be
made over very short periods of time. This means that such
measurements are unlikely to reflect the long-term
habitual intake of individuals that for most purposes is
the timeframe of interest.
When dietary intake data are used in order to assess the

atis eas b eat, bu fi er can be
a daunting task (Helsing, 1991)"

= B

What is dietary intake?
Dietary intake is generally considered to include all foods
and beverages (hereafter referred o as food) consumed by
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Outline

e Data
o Missing value imputation in Food Composition Databases
e Information
o Extracting food information from scientific literature
e Knowledge
o Food, Chemical, Disease Knowledge Graph Construction
o Food authenticity
o Covid-19 mortality rate prediction
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Missing value imputation in FCDB
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Classical approach sciences Pl
Article

o  Meanor median value of the values of the given nutrient in

MIGHT: Statistical Methodology for Missing-Data
the same food from several other FCDBs

Imputation in Food Composition Databases

Gordana Ispirova 2*), Tome Eftimov !, Peter Koro$ec ! and Barbara Korousi¢ Seljak
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Imputation of a single missing nutrient value

o MIGHT - discover from which countries we can borrow
using statistical analyses

o  Data mining methods

Food and Chemical Toxicology
Volume 141, July 2020, 111368

Evaluating missing value imputation methods
for food composition databases

Journal of Food Composition and Analysis 112 (2022) 104638

Contents lists available at ScienceDirect o

Imputation of multiple missing nutrients
values

Journal of Food Composition and Analysis

ELSEVIER journal homepage: www.elsevier.com/locate/jfca &L

o  Morerealistic scenario - denoising autoencoders
e-‘\y
Missing value imputation in food composition data with oy

denoising autoencoders

Ivana Gjorshoska ™', Tome Eftimov ", Dimitar Trajanov



Missing value imputation

Might results
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Distribution of absolute error of: MIGHTv1 average, regular
average, MIGHTv1 median and regular median calculated
for the Potassium (K) content in foods from the food group
“Fruits”.

Autoencoders results
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Extracting food information from scientific literature

Named-Entity Recognition (NER)
Excessive EEllf intake has been associated with a higher incidence of .
Named-Entity Linking (NEL)

Excessive [00002 (FoobB)] intake has been associated with a higher incidence of

[0001(uMLS)].



From Language Technologies to Decision Support

Structured Question Decision
knowledge Answering Support

(Semi)
Automatic
knowledge base
construction

Relation
extraction
methods

Named Entity
Linking methods

Named Entity
Recognition
methods




State in the Biomedical Domain

Structured Question Decision
knowledge * Answering Support

(Semi)
Automatic
knowledge base
construction

Relation
extraction
methods

Named Entity
Linking methods

Named Entity
Recognition
methods



State in the Food Domain
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FoodViz Tool

FoodViz with FOodNER Recipes Free text FoodNER annotation FoodNER resources Food Onto Map Index
Recipes Recognized Entities for recipe Orecipe1006
Currated?

Mix the By (0 D). 0. and [T Mytogether in a bowl until evenly blended . Keeping the mixture in the bowl ,

Filter recipes scrape it into a semi-ball shape . Cover , and refrigerate until firm , at least 2 hours . Place a large sheet of waxed paper on a flat surface .
Sprinkle with {ZET. Roll the Eirgin the EEEMuntil completely covered . Transfer the I dT0bto a serving plate , or rewrap with

All categories v
waxed paper and refrigerate until needed .

Orecipe 1006
Orecipe1013
Orecipe1046 Entlty tags
Orecipe1058
Orecipe106 Entity Synonyms Hansard Tags Hansard Hansard FoodOn SnomedCT OF
Orecipe1078 Parent Closest
Orecipe1090
Orecipe1102 cream cheese CREAM CHEESE AG.01.e [Dairy Dishes Dairy produce cream cheese Cream
Orecipe1110 produce];AG.01.e.02 and cheese
Orecipe1122 [Cheese];AG.01.n prepared Cheese
Orecipe1134 [Dishes and prepared food Cream
Orecipe1142 food];AG.01.n.18
Orecipe1166 [Preserve];
Orecipe1174
Orecipe1186 beef BEEF AG.01.d.03 [Beef]; Animals Food Beef
Orecipe1197 for food
Orecipe1218
Orecipe1231 olives OLIVES AG.01.h.01.e [Fruit Fruit and Fruit containing Olives
Orecipe1251 containing stone]; vegetables stone
Orecipe1263
Orecipe1271 onion ONION AG.01.h.02.e Fruit and Onion/leek/garlic  onion (whole) Onion of:Onion
Orecipe1283 [Onion/leek/garlic]; vegetables Allium cepa

Orecine1295
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Food, Chemical, Disease Knowledge Graph
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Food, Chemical, Disease Knowledge Graph
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Food, Chemical, Disease Knowledge Graph
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Food authenticity
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COVID-19 mortality rate

e Predict covid-19 mortality rate on a country level based on the dietary
habits, the most common comorbidities, and the socio-economic
factors of the country

o Food consumption - FAO
o The most common comorbidities - WHO
o Socio-economic factors

m Longitude

m Latitude

m Average temperature per season

u GDP Trajanoska, M., Trajanov, R., & Eftimov, T. (2022). Dietary,
u comorbidity, and geo-economic data fusion for explainable

COVID-19 mortality prediction. Expert Systems with Applications,
209, 118377.



COVID-19 mortality rate

Alcoholic Beverages
Fruits - Excluding Wine
Summer Average Temperature
Min Longitude "
Diseases of the skin and subcutaneous tissue
Animal fats
Mental and behavioural disorders

Meat
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SHAP value (impact on model output)
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COVID-19 mortality rate

3.865 = Meat

21.14 = Summer Average Temperature
7.222 = Autumn Average Temperature
0.963 = Alcoholic Beverages

2.55 = Fruits - Excluding Wine

1.1 = gdp_2017

522 = Animal fats

5 723 = Milk - Excluding Butter

9739 = Vegetable Oils E

52 other features

North Macedonia

' 0.08
ELAX)] =0.061

0.10

012

0.14



COVID-19 mortality rate

South Africa

18,667 = Diseases of the eye and adnexa and ear and mastoid process

0 846 = Fruits - Excluding Wine
' 451 = Alcoholic Beverages +0.01

2.097 = Milk - Excluding Butter

1 167 = Diseases of the skin and subcutaneous tissue

2045 = Treenuts

9466 167 = Certain conditions originating in the perinatal period

I 107 = Autumn Average Temperature

) 667 = Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified

52 other features +0.01

0.01

0.055 0.060 0.065 0.070 0.075 0.080C
E[fiX)] = 0061



COVID-19 mortality rate

2.41 = Alcoholic Beverages

12,966 = Summer Average Temperature
5.186 = Fruits - Excluding Wine

6.158 = Autumn Average Temperature
7.674 = Milk - Excluding Butter

1.887 = Animal fats

4.8 = gdp_2017

6. 224 = Vegetable Qils

0202 = Treenuts

Slovenia
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