

Optical Sensor receptors for Food Freshness and Pesticides detection

<u>Aleksandra LOBNIK</u>, Luka Popović, Edouardo Dona,V. Šumak, V. V. Siliesarenko

24-26 April 2023, 2nd ISO-FOOD SYMPOSIUM

http://www.ios.si/

IOS, Institute of Environmental Protection and Sensors

PATENT:

LOBNIK, Aleksandra "Sol-gel based optical chemical sensor for detection of organophosphates and method for preparation thereof": US Patent 2013/0251594A1; Appl. No.: 13/989,529; PCT/SI2011/000068; United States and International Intelectual Property Law, 2013

PATENT:

KOŠAK Aljoša, LAKIĆ Marijana, LOBNIK Aleksandra, "Process for the preparation of superparamagnetic hollow spherical nanostructures", application number P-201400120, European Patent Office CA G2, 25 Mar 2015.

Sensor Applications

DEFINITION OF SENSORS

Chemical Sensors are miniaturized analytical devices that can deliver real-time and on-line information on the presence of specific compounds or ions in complex samples.

Nanosensors – using nanomaterials or nanotechnologies to prepare nano sensor receptors

Analytical aspects of sensors

- sensitivity in the range of interest
- selectivity for the analyte
- broad dynamic range
- reversibility
- lack of frequent calibration
- fast response
- inertness to sample matrix
- small size

"Optrode" - (from optical electrode) and "optode" (from Greek - the optical way)

- intrinsic optical property of the analyte is utilized for its detection
- indicator (or label) based sensing is used when the analyte has no intrinsic optical property INDICATOR CHEMISTRY
- (FOCSs) represents a subclass of chemical sensors in which an optical fiber is used aspart of the transduction element.

OPTICAL CHEMICAL/BIO- SENSOR system

analytical signal

Design of optical chemical sensor "Indicator chemistry"

Indicators

Absorbance based:

- Undergo colour change
- Detection by "naked "eye

Detection by colorimetry

Luminescence based: Fluorescence Phosphorescence Chemiluminiscence Electroluminiscence Detection by: UV lamp Intensity change

Lifetime measurements

Polymer carrier

* hydrophobic

* hydrophilic

PVC, PMMA, PE, PS, ...

Detection of gases

polysaccharides, polyacrilates, polyamines, hydrogels...

* hidrophobichydrophilic

sol-gel

Detection of ions and gases

Ion detection

Sol-gel process (Silica nanoparticles)

1. hydrolysis

 $Si(OR)_4 + H_2O \implies HO-Si(OR)_3 + ROH$

2. condensation:

HO-Si(OR)₃ + HO-Si(OR)₃ \longrightarrow HO-Si(OR)₂-O-Si(OR)₂ + HOH HO-Si(OR)₃ + Si(OR)₄ \implies Si(OR)₃-O-Si(OR)₃ + ROH

Monomers	Other metals
Si(OR') ₄	Zr(OR') ₄
R ₁ -Si(OR') ₃	R ₁ -Zr(OR') ₃
$R_1 R_2$ -Si(OR') ₂	$R_1 R_2 - Zr(OR')_2$
R: aliphatic, aromatic	Ti, Sn

ADVANTAGES OF USING NANOMATERIALS FOR SENSORS

- Improved sensor characteristic (response time, sensitivity, etc.)
- In-vivo measurements,
- Small sample volumes,
- Multi-analyte sensing

Design of Optical nanosensor

Borisov SM, Klimant I (2008) Analyst 133:1302-1307

a, macromolecular nanosensors (dendrimers); b, NSs based on polymer materials and sol-gels; c, multi-functional core-shell systems; d, multi-functional magnetic beads; e, NSs based on quantum dots; f, NSs based on metal beads

Comparison of OP sensor characteristics

(A. Lobnik, Š. Korent Urek, EU, USA, Russia patents)

	Dye-doped thin films	Dye-doped nanoparticles
Limit of detection (mol/L)	6.7×10 ⁻⁷	0.17×10 ⁻⁹
Working range (mol/L)	6.9×10 ⁻⁷ - 6.9×10 ⁻³	0.17×10 ⁻⁹ - 2.3×10 ⁻⁷
Response time (s)	600	12

Luminiscence measurements of OP

Applications in Food safety: Food freshness

Food freshness depends on microbialogical activity

and

Various Biogenic amines are formed and released

Amino acid

Vino

(histamin, tiramin, triptamin, feniletilamin, agmatin, kadaverin, putrescin, spermidin)

Sir

(putrescin, kadaverin, histamin, tiramin, feniletilamin, spermin, spermidin, agmatin)

Riba/Tuna

(histamin, triptamin, kadaverin, feniletilamin, spermin, spermidin, tiramin, agmatin)

Meso/Klobasa

(triptamin, feniletilamin, putrescin, kadaverin, histamin, serotonin, tiramin, spermin, spermidin, agmatin

Sadje/Zelenjava

(dopamin, tiramin, putrescin, kadaverin, histamin, serotonin, agmatin, feniletilamin, spermidin, spermin, agmatin)

decarboxylation amino acid

CO

biogenic amine

R-CH₂NH₂

Hrana in pijača

METHODS FOR BIOGENIC AMINE DETERMINATION

Instrumental or classical methods

- High-performance liquid chromatography (HPLC)
- Thin-layer chromatography (TLC)
- Gas chromatography (GC)
- Micellar electrokinetic chromatography (MEKC)

Other methods

- electrochemical methods (capillary electrophoresis) (CE)
- enzymatic methods (biosensors)
- Optical methods
 - Optical chemical sensors (OCS)

Derivational reagents:

- dansyl chloride,
- benzoyl chloride,
- dansyl chloride,
- fluorescein,
- 9-fluorenylmethyl chloroformate,
- naphthalene-2,3-dicarboxaldehyde
- orthophthalaldehyde (OPA)

OPTICAL DETERMINATION OF BA BY O-PHTHALDIALDEHYDE (OPA)

OPTICAL DETERMINATION OF BA IN SOLUTION

OPTICAL DETERMINATION OF BA BY O-PHTHALDIALDEHYDE (OPA)

Wayalangth [nm]

OPTICAL DETERMINATION OF BA BASED ON SiO₂ PARTICLES

		AGMATINE		
SUMMARY	Comparison of the results based on the optical determination of AgmS in solution with and without SiO ₂ -SH-OPA particles at pH 13			
Parameters		Optical determination of AgmS		
		with OPA	with SiO ₂ -SH-OPA particles	
Fluorescent product	t	OPA-AgmS	SiO ₂ -SH-OPA-AgmS	
Spectral properties	$(\lambda_{\rm ex}/\lambda_{\rm em})$	340 nm / 473 nm	340 nm / 430 nm	
Concentration range	e	$6.0 \times 10^{-7} \text{ M} - 8.,0 \times 10^{-6} \text{ M}$	$1.0 \times 10^{-6} \text{ M} - 1.0 \times 10^{-2} \text{ M}$	
The correlation coef	ficient r ²	0.9989	0.9989	
Linear equation		y = 1.53 + 81.47x	y = 5.43 + 0.71x	
LOD		2.5×10^{-7} M	7.3×10^{-7} M	
Response time		<u>20 m</u> in	2-3 min	
Buffer		pH 13	pH 13	

Freshsens

- The sensor is suitable for raw, untreated fish and chicken meat
- Color change is a measure of the usefulness of the meat (see color scale)
- Response time is 30 minutes
- The sensor is useful when blue coloration is reached (spoiled meat) and can be used again if the initial color is yellow

Correlation to the microbiological measurements

- sensor absorption measurements on spectrophotometer (laboratory)
- monitoring of the activity of microbiological parameters bacteria Pseudomonas spp. (PSDM)
- signal of the sensor in correlation with the increase in the number of bacteria Pseudomonas spp.

Biosensing layer for OP determination

N. Francic, A. Lobnik, E. Efremenko, Bioscience and Technology, 2012)

- His₆-OPH (EC 3.1.8.1.) organophosphorous hydrolase
- Enzyme hydrolyzing a broad spectrum of organophosphorous compounds (OPCs) containing P–O, P–F and P–S bonds in the triesters of orthophosphoric acid
- Metalloenzyme: cofactors are Co²⁺ and other bivalent ions
 - Optimal activity :
 - ▶ T = 45 53 °C (pH 10.5)
 - ▶ pH between 10 in 11.5
 - High specific activity: ~ 5000 U/mg
 - <u>hexahistidine (His₆) tag fused to OPH</u> \rightarrow improving the catalytic efficiency, especially towards P–S-containing substrates, and the stability under alkaline hydrolysis conditions compared to native OPH

Entraped His₆-OPH within hybrid SiO₂ sol-gel layer

Comparison of two types of biocatalyst films TEOS/GPTMS (R=188, P=5:1) and TMOS/MTMOS (R=148, P=1:2) for a) repeated use in the detoxification of POX. Conditions: 0.675 mM paraoxon, temperature 25 °C, 50-mM Na-carbonate buffer (pH 9.5); and b) stability of SiO₂ thin films with entraped His₆-OPH

Anal Bioanal Chem (2011) 401:2631-2638

J Sol-Gel Sci Technol (2015) 74:387–397

Silica particles with immobilized His₆-OPH for POX determination/detoxification

TEM micrographs of silica particles. (A-B), SEM microgram (C), and particle size distribution (D) of MPS 5 particles.

Silica particles with immobilized His₆-OPH for POX determination/detoxification

Fig. 4: Cycles of usage (a) and stability (b) of silica particles with immobilized His₆-OPH.

Mesoporous TiO₂ thin films as efficient enzyme carriers for paraoxon determination/detoxification

imidazole carbamate intermediate

titania thin films

Schematic representation of the preparation route of His₆-OPH-conjugated mesoporous titania thin films trough CDI mediated reaction.

Mesoporous TiO₂ thin films as efficient enzyme carriers for paraoxon determination/detoxification

Figure Cycles of usage for covalently attached His₆-OPH, TiF-10 and TiF-bim (black and grey squares), and adsorbed His₆-OPH, TiF-10, TiF-10 and TiF-bim (black and grey circles). Measurements were performed with selected 50 mm² bio-functionalized mesoporous titania thin-films with covalently attached His₆-OPH at 20 °C and pH 10.5 (CB, 50 mM). Substrate: 0.3 mM paraoxon.

Figure Stability of titania bio-sensing film (TiF-9) with covalently attached enzyme several days after film preparation.

PESTICIDE FLUORESCENT DETECTION

Edoardo DONA, ITN pH.D. Student in FoodTraNet project lead by prof.dr. Nives Ogrinc

Dimethoate

Omethoate

Azinphos methyl

Ethion

32

PESTICIDE ¹⁾ NaOH(aq) ²⁾ HCI(aq) pH≈7 R-SH + FLUORESCENT DYE

DIMETHOATE Fluorescence

CALIBRATION CURVE

Molarity

cIOS

Pesticide	LOD	Estimate LOD
Dimethoate	1 ppb	No improvements
Omethoate	302 ppb	Very big (10ppb)
Azinphos methyl	3,6 ppb	Little (1ppb)
Phosmet	60 ppb	Little (30 ppb)
Phorate	143 ppb	Medium (50 ppb)
Demeton	422 ppb	Very big (20ppb)
Malathion	336 ppb	Medium (150ppb)

THANK YOU FOR YOUR ATTENTION