Total mercury and methylmercury levels in hair, blood, and urine of individuals following controlled intake of tuna fish Institut
 "Jožef Stefan"
 Ljubljana, Slovenija

A. Alilović¹, P. Klemenčič², N. Palir^{1,2}, J. Snoj Tratnik^{1,2}, E. Begu², D. Mazej², I. Falnoga², A. Studen², M. Horvat^{1,2}

(1)International Postgraduate School Jožef Stefan, Ljubljana, Slovenia,
 (2)Jožef Stefan Institute, Department of Environmetnal Sciences,
 Ljubljana, Slovenia

2nd ISO-FOOD Symposium, Portorož, Slovenia, April 24 – 26, 2023

www.environment.si

adna.alilovic@ijs.si

Introduction

Fish – an important source of nutrients but also the main source of human exposure to Hg

 \rightarrow large, predatory fish can contain high amounts of MeHg (biomagnification through the food chain)

*Image adapted based on Bretwood Higman, Ground Truth Trekking

• Different mercury species have different toxicokinetic properties

 \rightarrow MeHg is readily absorbed in the GI tract, IHg absorbed very little

*GI: gastrointestinal; CNS: Central Nervous System

Elinder CG, Gerhardsson L, Oberdorster. 1988. Biological monitoring of toxic metals-Overview. p 1-71. In Biological Monitoring of Toxic Metals, Ed. T.W. Clarkson, L. Friberg, G.F. Nordberg and P.R. Sager, eds. New York. Plenum press.

• Different mercury species have different toxicokinetic properties

 \rightarrow MeHg is readily absorbed in the GI tract, IHg absorbed very little

*GI: gastrointestinal; CNS: Central Nervous System

Elinder CG, Gerhardsson L, Oberdorster. 1988. Biological monitoring of toxic metals-Overview. p 1-71. In Biological Monitoring of Toxic Metals, Ed. T.W. Clarkson, L. Friberg, G.F. Nordberg and P.R. Sager, eds. New York. Plenum press.

- Common assumptions in health risk assessment:
 - → all Hg in fish is MeHg
 → ingested MeHg from fish is 95-100% bioavailable
- based on **outdated** studies with significant **limitations** (e.g. unrealistic exposure routes, not using MeHg bound to fish tissue from natural contamination)
- studies on Hg kinetics outdated, often limited data
- many uncertainties, worst-case scenario approach

This can lead to an overestimation of exposure and risk!

Our aim: reduce the uncertainties in the exposure and HRA and validate pharmacokinetic models (detailed kinetic data from controlled exposure) \rightarrow better prediction of individual internal dose, better risk assessment

→ creation of a realistic and controlled exposure scenario and subsequent measurements of THg and MeHg in multiple biological samples

→ creation of a realistic and controlled exposure scenario and subsequent measurements of THg and MeHg in multiple biological samples

→ creation of a realistic and controlled exposure scenario and subsequent measurements of THg and MeHg in multiple biological samples

→ creation of a realistic and controlled exposure scenario and subsequent measurements of THg and MeHg in multiple biological samples

→ creation of a realistic and controlled exposure scenario and subsequent measurements of THg and MeHg in multiple biological samples

→ creation of a realistic and controlled exposure scenario and subsequent measurements of THg and MeHg in multiple biological samples

→ creation of a realistic and controlled exposure scenario and subsequent measurements of THg and MeHg in multiple biological samples

The experiment was continued until week 12, with **13 total sampling dates** (last on the 14th of April)

15.01.2023

13.01.2023

Different cooking methods – reduction of bioaccessibility of Hg from fish

Dietary diary – how tuna was prepared, foods and drinks consumed with it

The experiment was continued until week 12, with **13 total sampling dates** (last on the 14th of April)

Total and methylmercury levels in blood over time – experimental group

0 1 3 5 10 14 26 31 38 46 49

Ξ^Ξ

0

0 1 3 5 10 14 26 31 38 46

8

MeHg

THg

THg and MeHg in blood in ngg-¹ 0 10 05 00 00 00 00

0

50

r-33 u ui

and MeHg in blood ir 00 20

Hg 0

50

30

20

0

0,994 10

0

₁-66u 40

5

d Mo

BH

0

0,708

0

different previous fish consumption habits \rightarrow • different starting concentrations of MeHg and THg in blood

. 22 40

0

50

r-33 u ui

and MeHg in blood ir 00 20

THg 0

50 r-66u ui

30

20

10

0

0

d Mo

BH

0

different previous fish consumption habits \rightarrow • different starting concentrations of MeHg and THg in blood

. 22 40

0

50

1-33u ui

and MeHg in blood ir 00 20

THg 0

50 r-66u ui

30

20

10

0

d MeHg in

THG

different previous fish consumption habits \rightarrow • different starting concentrations of MeHg and THg in blood

15.092

0

0,708

0 1

10 0,994

0

<u></u> 40

and MeHg in blood i 0 20

THE

50

-33 u u 40

and MeHg in bloo 00 10

Hg

0

50

40

30 20

- different previous fish consumption habits → different starting concentrations of MeHg and THg in blood
- lower THg concentrations higher % of inorganic mercury

Total Hg in blood in ng g^{-1} blood

- all participants reached maximum THg and MeHg concentrations at the day 5 of the experimet
- practically all Hg was MeHg

MeHg

14 26 31 38 46 49

THg and MeHg in blood in ngg-¹ 00 00 00 00

0

1,837

0

16,900

10

• maximum concentrations varied significantly among the participants

• The increase in THg and MeHg levels in blood strongly depends on the Hg concentration in tuna and dose per kilogram body weight

Total and methylmercury levels in urine over time – experimental group

Total and methylmercury levels in urine over time – experimental group

• MeHg measured in urine independent of the administered dose of Hg

Total and methylmercury levels in urine over time – experimental group

- MeHg measured in urine independent of the administered dose of Hg
- THg and IHg are very weakly dependent on the administered dose of Hg

- the highest MeHg in urine was measured at the end of the first week (right after tuna consumption)
 - MeHg represented up to 13% of the total mercury

- the highest MeHg in urine was measured at the end of the first week (right after tuna consumption)
 - MeHg represented up to 13% of the total mercury
- the highest THg measured in urine was one month after the tuna consumption

- the highest MeHg in urine was measured at the end of the first week (right after tuna consumption)
 - MeHg represented up to 13% of the total mercury
- the highest THg measured in urine was one month after the tuna consumption

There are large individual differences in mercury levels in urine

 \rightarrow Genetic factors? Is demethylation more efficient in people who often eat fish?

Conclusions

- Presented results are only preliminary there is still a lot to do!
 - \rightarrow more measurements:
 - MeHg speciation in tuna
 - hair THg and MeHg, multielemental analysis
 - THg and MeHg in plasma, erythrocytes
 - Se speciation in in blood and plasma
 - Hg isotopic measurements
 - → genotyping for single nucleotide polymorphisms previously found associated with Hg kinetics (e.g. APOE, GSH-related genes)
 - \rightarrow analyses of the results (multielemental + speciation)
 - \rightarrow comprehensive approach
 - improvement of kinetic models

Thank you for your attention!

This work was implemented as part of the ARRS program P1-0143 funded by the Slovenian Research Agency and implemented in the framework of the fellowship provided by Salonit Anhovo. We thank the volunteers for their participation.