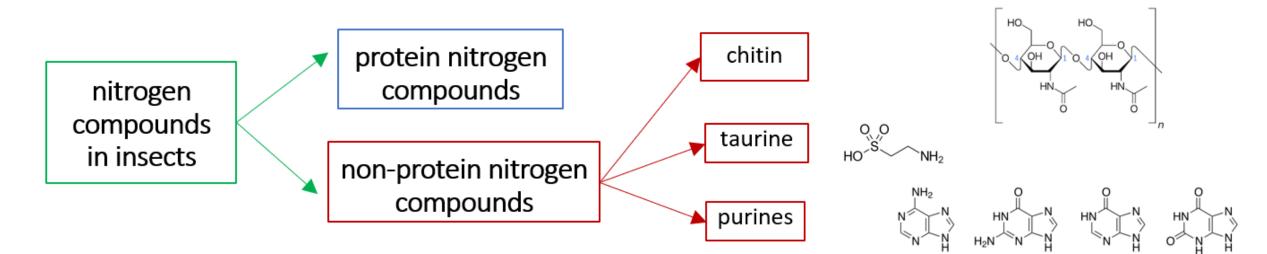


Czech University of Life Sciences Prague

Selected Non-Protein Nitrogen Compounds in Insects for Food and Feed Purposes

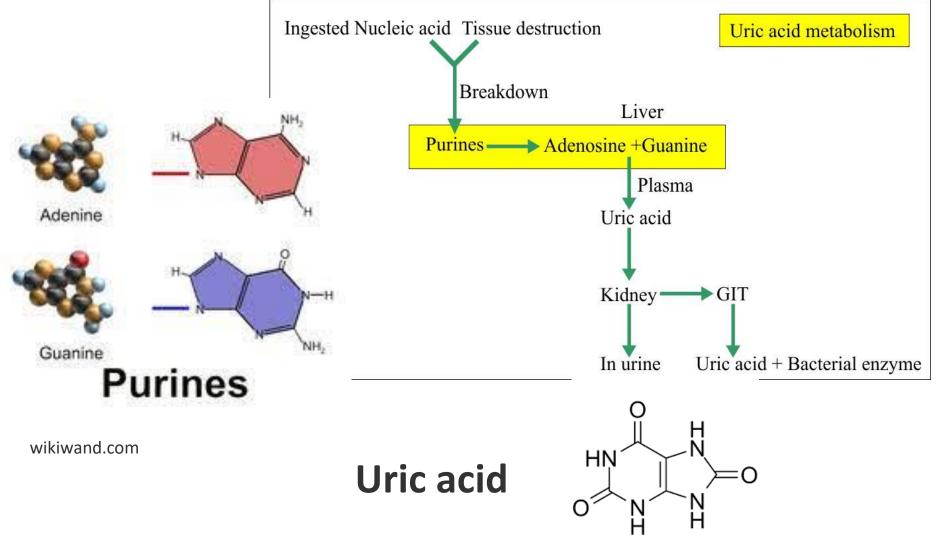

<u>Lenka Kouřimská</u>, František Kvasnička, Monika Sabolová, Aleš Rajchl, Roman Bleha, Petra Škvorová, Michal Kurečka, Martin Kulma Czech University of Life Sciences Prague, University of Chemistry and Technology Prague

OVERWIEW

- Nitrogen compounds in food
- Nitrogen-to-protein conversion factor
- Non-protein nitrogen compounds
 - Purines
 - Taurine
 - Chitin

Kjeldahl method

Nitrogen in compounds is converted to NH₃, followed by acido-basic reactions and titration


Nitrogen-to-protein conversion factors generally used: 6.25 (16% N) eggs, meat: 6.25 milk: 6.38 wheat: 5.83 rice: 5.95 peanuts: 5.46

Non-protein nitrogen substances in insects: 11-26% (Janssen et al. 2017)

for example: chitin, nucleic acids, phospholipids, and excretion products (e.g., ammonia) in the intestinal tract 4 ISO-FOOD 24.-26. 4. 2023

PURINES

GOUT

- painful form of inflammatory arthritis
- extra uric acid in body ⇒ sharp crystals may form in the big toe or other joints (knee, ankle, foot, hand, wrist and elbow) ⇒ episodes of swelling and pain called gout attacks
- treatable with medications and changes in diet and lifestyle

Purines in food

- High levels (150-1000 mg/100 g): organ meats, seafood and yeast extracts
- Moderate levels (50-150 mg/100 g): beans, pulses and some vegetables
- Low levels (<50 mg/100 g): milk products, eggs, refined cereals and most fruits and vegetables

Lockyer & Stanner (2016)

Purines in insect???

AIM OF OUR RESEARCH IN PURINES

- to analyse the content of selected purine derivatives (adenine, guanine, hypoxanthine, and xanthine) and their metabolite (uric acid) in different insect species
- to compare the levels of purines with conventional meat sources
- to evaluate sex-dependent differences in purines content
- to see the effect of developmental stage on purines and uric acid content

GDP GDP GMP GMP GMP Guanine Hypoxanthine Uric Acid

MATERIAL

Insect samples:

Orthoptera

house cricket (*Acheta domesticus*) – nymph and adult Jamaican field cricket (*Gryllus assimillis*) - nymph and adult migratory locust (*Locusta migratoria*) – nymph and adult desert locust (*Schistocerca gregaria*) - adult

Coleoptera

mealworm (*Tenebrio molitor*) - larvae and pupae

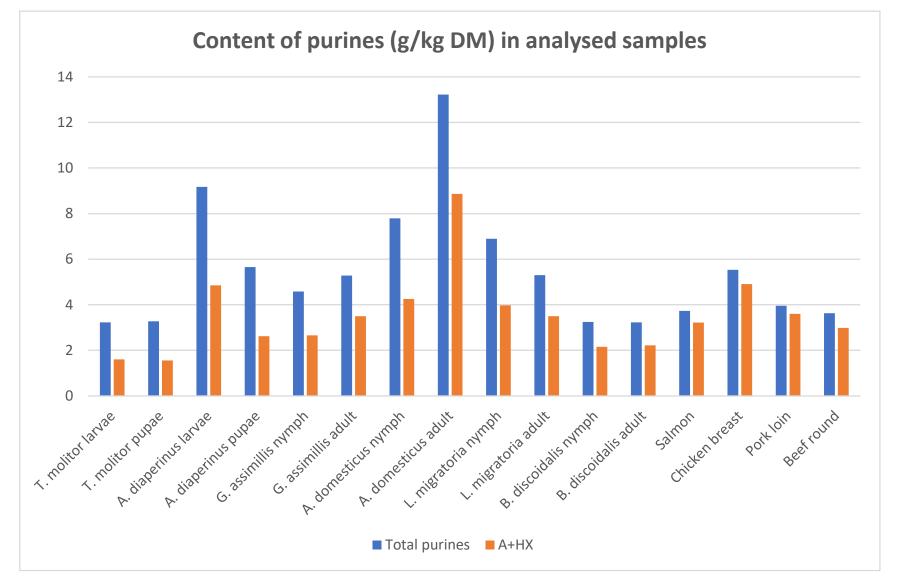
lesser mealworm (Alphitobius diaperinus) - larvae and pupae

Blattodea

discoid cockroach (Blaberus discoidalis) – nymph and adult

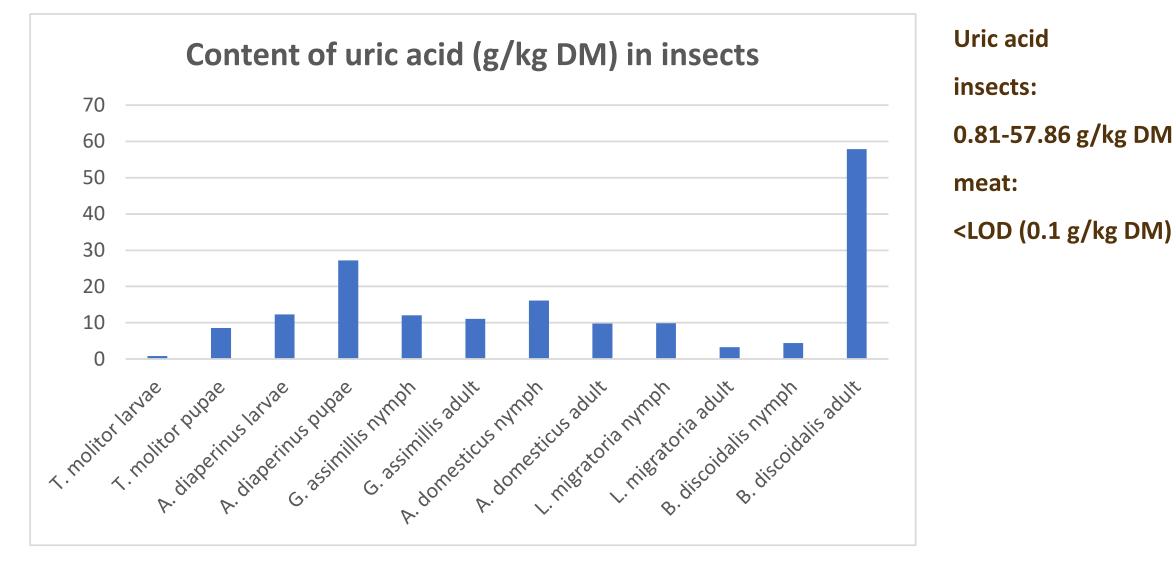
MATERIAL AND METHODS

• Conventional meat samples:


chicken, pork, beef, and salmon

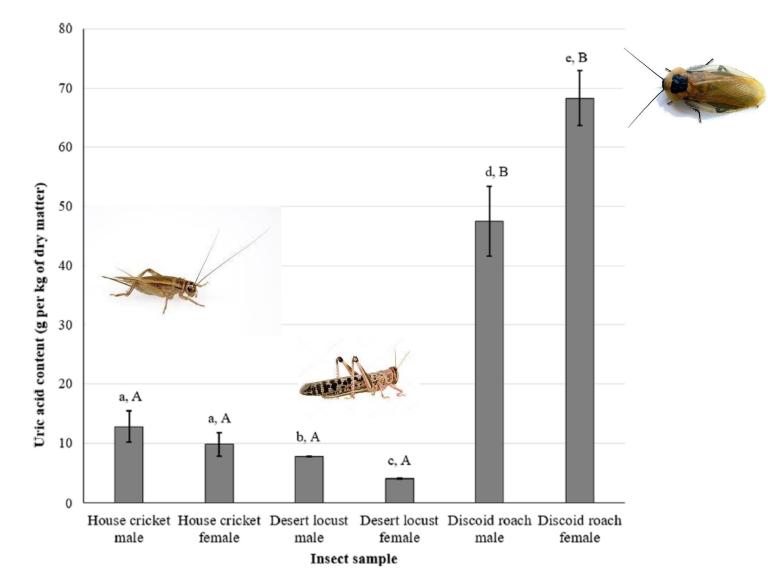
- Purine analysis:
 - **RP-HPLC/DAD**,
 - mobile phase 0.05 mol/L KH_2PO_4 in water (pH 3.6) as solvent A,
 - and acetonitrile as solvent B,
 - Luna C18 column (250 × 4.6 mm),
 - detection uric acid 285 nm,
 - guanine and hypoxanthine 250 nm,
 - xanthine and adenine, 260 nm

Insect vs. conventional meat sources



Total purines insects: 3.23-13.22 g/kg DM meat: 3.61-5.53 g/kg DM)

Uric acid in insects



11 ISO-FOOD 24.-26. 4. 2023

Faculty of Agrobiology, Food and Natural Resources

RESULTS – uric acid content – differences between sex and species

Insects vs. conventional meat sources

Total purine content in analysed insects was more less similar to the content of such compounds in commonly consumed meats.

The obtained results indicate that edible insects constitute a reasonable source of purines

and uric acid, and patients suffering gout should be cautious about excessive and daily

consumption of edible insects and the products made therefrom.

Short communication

Sex-dependent differences in purine and uric acid contents of selected edible insects

Monika Sabolová^{a, *}, Martin Kulma^b, Lenka Kouřimská^a

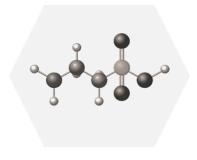
RESEARCH ARTICLE

Investigating purine and uric acid contents of various development stages of artificially reared edible insects

M. Sabolová () (), M. Kulma (), P. Škvorová (), K. Veselá (), M. Kurečka (), L. Kouřimská () *Corresponding author: sabolova@af.czu.cz

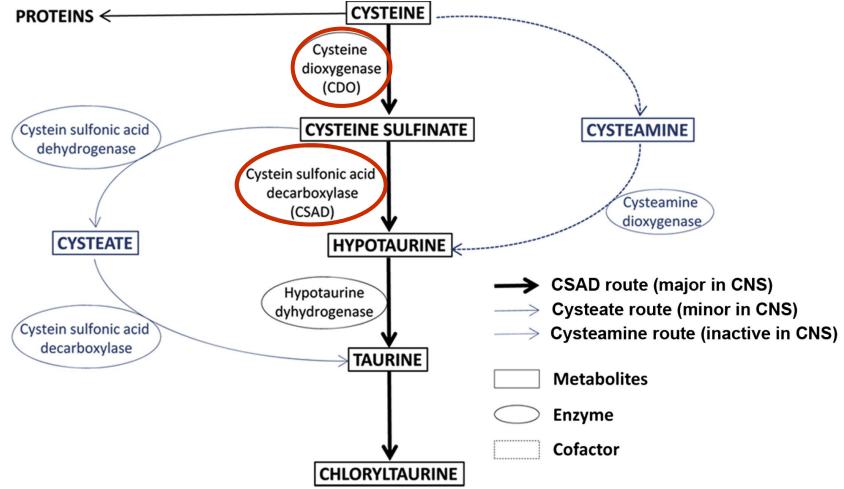
Journal of Insects as Food and Feed: 9 (1)- Pages: 77 - 85

https://doi.org/10.3920/JIFF2022.0011


Changes in purine and uric acid content in edible insects during culinary processing

Monika Sabolová ^{a, *}, Martin Kulma ^b, Dora Petříčková ^a, Kateřina Kletečková ^a, Lenka Kouřimská ^a

Taurine


- 1827 Friedrich Tiedemann and Leopold Gmelin bile of *Bos taurus*
- 2-aminoethane sulfonic acid
- plays a key role in the central nervous system, light-sensitive tissues in the retina, and in cardiac and vascular functions
- intracellular osmolyte
- neurotransmitter
- antioxidant
- essential for some organisms
 - low or no levels of enzymes cysteine dioxygenase
 and cysteine sulfonic acid decarboxylase

ISO-FOOD 24.-26. 4. 2023

Metabolism

(Froger et al. 2014)

24.-26. 4. 2023

Faculty of Agrobiology, Food and Natural Resources

Taurine sources

Meat	Part	Taurine [mg/100 g]		
Beef	spleen	96		
DEEI	Lungs	87		
Dard	kidney	69-96		
Pork	lungs	87		
	thigh	169-379		
Chicken	kidney	110		
Fish		72-280		
Product	Animal	Taurine [mg/100 g]		
Milk –	COW	2.5		
	goat	8.5–11.4		
Vechurt	COW	0.8–3.3		
Yoghurt –	goat	5.3		

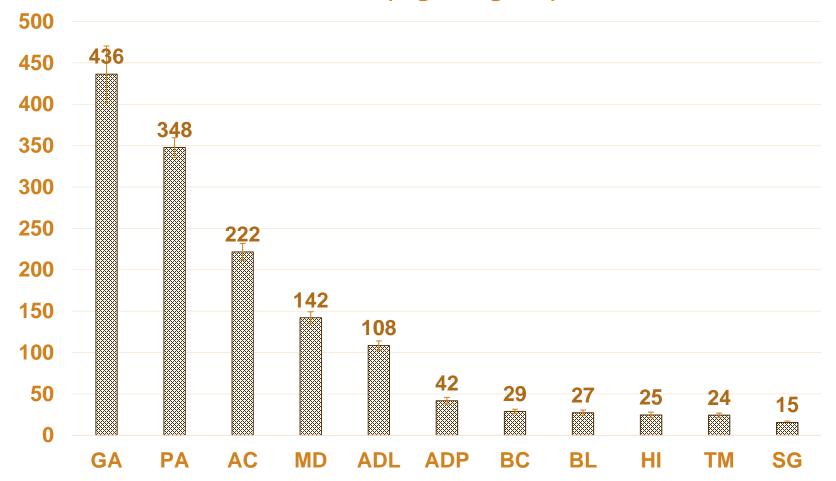
Detection of taurine content in several commercially available insect species suitable

for large scale production:

- lesser mealworm (Alphitobius diaperinus)
- house cricket (Acheta domesticus)
- death's head cockroach (Blaberus craniifer)
- Turkestan cockroach (Blatta lateralis)
- Jamaican field cricket (Gryllus assimilis)
- black soldier fly (Hermetia illucens)
- house fly (Musca domestica)
- American cockroach (Periplaneta americana)
- desert locust (Schistocerca gregaria)
- yellow mealworm (*Tenebrio molitor*)

Methods

- N-substances (crude protein) Kjeltec
- Chitin hydrolysis (6M sulphuric acid) glucosamine spectrophotometric method
- Taurine conversion to isethionic acid on-line coupled capillary isotachophoresis with capillary zone electrophoresis with conductivity detection
- True protein content:
- True protein = (total mineral nitrogen chitin nitrogen taurine nitrogen) × 6.25
 - chitin nitrogen = chitin/14.51 (conversion factor derived from the representation of nitrogen at 6.89 % in a molecule of chitin)
 - taurine nitrogen = taurine/8.54 (11.19% of N in a taurine molecule)


24.-26. 4. 2023

Tested insect	Stage	Order	Dry matter	True protein	Chitin	Taurine	
			(g/100 g)	(g/100 g FW)	(g/100 g FW)	(mg/100 g FW)	(mg/100 g protein)
G. assimilis	adult	Orthoptera	27.74 ± 0.91	20.83 ± 0.71	2.14 ± 0.11^{bc}	121.0 ± 10.2^{a}	588.6 ± 49.8^{a}
P. americana	adult	Blattodea	33.10 ± 1.11	21.95 ± 0.74	2.33 ± 0.08^{b}	115.1 ± 4.0 ^a	559.5 ± 19.2 ^a
A. domesticus	adult	Orthoptera	24.97 ± 0.26	20.57 ± 0.70	2.24 ± 0.06^{b}	55.3 ± 2.2 ^b	268.9 ± 10.8 ^b
M. domestica	larvae	Diptera	24.38 ± 0.82	10.75 ± 0.36	1.97 ± 0.06^{bc}	34.6 ± 1.8 ^c	168.3 ± 8.6 ^c
A. diaperinus	larvae	Coleoptera	31.21 ± 1.05	20.67 ± 0.70	1.93 ± 0.05^{bc}	33.8 ± 1.8 ^c	164.4 ± 8.6^{c}
A. diaperinus	pupae	Coleoptera	36.62 ± 1.23	30.07 ± 1.02	2.22 ± 0.11 ^b	15.3 ± 1.4^{d}	74.3 ± 7.0 ^d
H. illucens	prepupae	Diptera	43.25 ± 1.45	11.89 ± 0.40	2.25 ± 0.11^{b}	10.6 ± 1.4^{d}	51.7 ± 7.0 ^d
B. lateralis	adult	Blattodea	34.83 ± 1.17	22.78 ± 0.77	2.06 ± 0.07^{bc}	9.5 ± 1.2^{d}	46.0 ± 5.8 ^d
B. craniifer	adult	Blattodea	24.62 ± 1.36	12.47 ± 0.42	2.11 ± 0.03^{bc}	7.1 ± 0.7^{d}	34.3 ± 3.4^{d}
T. molitor	larvae	Coleoptera	26.96 ± 0.96	17.54 ± 0.60	1.64 ± 0.11^{c}	6.5 ± 0.7 ^d	31.7 ± 3.5 ^d
S. gregaria	adult	Orthoptera	34.67 ± 1.16	13.57 ± 0.46	3.03 ± 0.19^{a}	5.4 ± 0.6^{d}	26.0 ± 2.8^{d}

24.-26. 4. 2023

Taurine (mg/100 g DM)

GA - Gryllus assimilis PA - Periplaneta Americana AC - Acheta domesticus MD - Musca domestica ADL – larvae of *Alphitobius* diaperinus ADP – pupae of *Alphitobius* diaperinus BC - Blaberus craniifer BL - Blatta lateralis HI - Hermetia illucens TM - Tenebrio molitor SG - Schistocerca gregaria

Results

4 significantly distinct groups according to taurine content:

- a) G. asimilis and P. americana (121.0 and 115.1 mg/100 g FW)
- b) A. domesticus (55.3 mg/100 g FW)
- c) *M. domestica* and larvae of *A. diaperinus* (34.6 and 33.8 mg/100 g FW)
- d) A. diaperinus pupae, H. illucens, B. lateralis, B. craniifer, T. molitor,
 - and *S. gregaria* (15.3-5.4 mg/100 g)

Taurine and chitin in insects

- Insects have been proposed as one of the most promising alternatives to conventional feline as well as fish feeds \Rightarrow the knowledge of taurine content in insects is valuable.
- The most taurine-rich insect species are comparable with conventional feeding ingredients such as fishmeal, animal muscles, and visceral tissues.
- Chitin contend varied from 1.63 to 3.03 g/100 g FW.

Journal of Chromatography A Volume 1695, 26 April 2023, 463952

2
RELEVAL OF CHIRDMADICALMENT A
Lauder

RESEARCH ARTICLE

Taurine content of insects used as feed

L. Kouřimská (1) (10), F. Kvasnička (1), M. Kurečka (1), A. Rajchl (1), P. Škvorová (1), M. Kulma (1) *Corresponding author: kourimska@af.czu.cz

Journal of Insects as Food and Feed: 0 (0)- Pages: 1 - 8

https://doi.org/10.3920/JIFF2022.0140

Electrophoretic determination of chitin in insects

František Kvasnička ª ♀ ⊠, Lenka Kouřimská ^b, Roman Bleha ^c, Petra Škvorová ^b, Martin Kulma ^d, Aleš Rajchl ª

Conclusion

- As non-protein nitrogen compounds (NPC) account for a relatively high percentage of the total nitrogen in insects, the amount of nitrogen present from NPC compounds should be considered when calculating the true protein content from the total amount of nitrogen substances.
- The nitrogen-to-protein conversion factor 6.25 overestimates the protein content, due to
- the presence of non-protein nitrogen in insects.
- The conversion factor 4.76 was calculated for larvae from *Tenebrio molitor*, *Alphitobius*
- diaperinus, and Hermetia illucens (Janssen et al., 2017).
- Boulos et al. (2020) calculated 5.41, 5.25, and 5.33 for mealworms, crickets, and locusts.

Thanks to my colleagues Monika, Martin, Petra, František et al.

Thank you for your attention kourimska@af.czu.cz

This study was supported by the METROFOOD-CZ research infrastructure project (MEYS grant number: LM2018100), including access to its facilities, the Czech Science Foundation (GAČR), project number 21-47159L (INPROFF: Quality, Safety and Authenticity of Insect Protein-based Food and Feed Products), and the OP VVV, project number CZ.02.2.69/0.0/0.0/19_073/0016944, improving the quality of the internal grant scheme at the CZU.

O A https://www.euraxess.cz/jobs/94593

ERA Chair – Head of the Food Technology Research Team

PAGE CONTENTS	11 APR 2023	
Job Information	Job Information	
Offer Description	Organisation/Company	Česká zemědělská univezita v Praze
Requirements	Department	HR
	Research Field	Other
Additional Information	Researcher Profile	Established Researcher (R3)
Work Location(s)	Country	Czech Republic
Where to apply	Application Deadline	6 Jun 2023 - 06:06 (Europe/Prague)
Contact	Type of Contract	Permanent
	Job Status	Full-time
	Hours Per Week	40