Fermented Spirulina Extract Antioxidant Activity in vitro and at the Cellular and Proteome Level

J. Masten Rutar, B. Cillero-Pastor, R. Mohren, L. Pogačnik, N. Poklar Ulrih, N. Ogrinc, P. Jamnik

Spirulina (Arthrospira spp.)

- Spirulina (Arthrospira spp.) one of the most important microalgal groups produced
- Contains macro- and micronutrients:

Spirulina (Arthrospira spp.)

- Spirulina (Arthrospira spp.) one of the most important microalgal groups produced
- Contains macro- and micronutrients:

Spirulina (Arthrospira spp.)

- Spirulina (Arthrospira spp.) one of the most important microalgal groups produced
- Contains macro- and micronutrients:
 - High-quality proteins
 - Minerals
 - Vitamins
 - Fatty acids
 - Polysaccharides
 - Pigments (carotenoids, c-phycocyanin, chlorophyll-a)
 - Other bioactive compounds

Spirulina as nutritional supplement

- Spirulina product market: continued and rapid growth until 2028 (CAGR of 18.1%).
- Microalgae-based commercial products: Asia or Australia, European companies: 5% of the global market.

Spirulina as nutritional supplement

- Spirulina product market: continued and rapid growth until 2028 (CAGR of 18.1%).
- Microalgae-based commercial products: Asia or Australia, European companies: 5% of the global market.

Spirulina as nutritional supplement

- Spirulina product market: continued and rapid growth until 2028 (CAGR of 18.1%).
- Microalgae-based commercial products: Asia or Australia, European companies: 5% of the global market.

Fermentation effect

- Improved nutraceutical profile
- Degradation of cyanobacterial cell walls
- Improved bioaccessibility and bioavailability
- Molecules with high:

Sugars in food	Lactobacillus bacteria
Lactic acid	

Fermentation effect

- Improved nutraceutical profile
- Degradation of cyanobacterial cell walls
- Improved bioaccessibility and bioavailability
- Molecules with high:
 - immunomodulatory,
 - antioxidant,

- anti-inflammatory

... biological activity.

Sugars in food	Lactobacillus bacteria
Lactic acid	

Fermentation effect

- Improved nutraceutical profile
- Degradation of cyanobacterial cell walls
- Improved bioaccessibility and bioavailability
- Molecules with high:
 - immunomodulatory,
 - antioxidant,

- anti-inflammatory

... biological activity.

Better nutritional and functional characteristics

Solvent effect

- Higher solubility of biologically active phytochemical compounds in alcohols
- Alcohol-soluble components: main antioxidative properties

Solvent effect

- Higher solubility of biologically active phytochemical compounds in alcohols
- Alcohol-soluble components: main antioxidative properties
- Higher antiradical and antioxidant activity!

A: Fermented and non-fermented broth

Component	NFB	FB
Crude protein	46.56 ± 2.43	47.37 ± 1.49
Total ash	12.65 ± 0.34	12.78 ± 0.08
Crude fat	6.26 ± 0.04	6.00 ± 0.01
Soluble dietary fibres	3.20 ± 0.46	4.02 ± 0.69
Insoluble dietary fibres	19.33 ± 0.70	17.79 ± 0.94
Total dietary fibres	22.53 ± 0.38	21.81 ± 0.72
Available carbohydrates	13.00 ± 0.74	11.05 ± 1.94
Non protein nitrogen/total nitrogen	$\textbf{24.8\% \pm 1.5\%}$	$28.4\%\pm1.1\%$

• Non-protein nitrogen increased:

Higher protein bioavailability

A: Fermented and non-fermented broth

Component	NFB	FB
Crude protein	46.56 ± 2.43	47.37 ± 1.49
Total ash	12.65 ± 0.34	12.78 ± 0.08
Crude fat	6.26 ± 0.04	6.00 ± 0.01
Soluble dietary fibres	3.20 ± 0.46	4.02 ± 0.69
Insoluble dietary fibres	19.33 ± 0.70	17.79 ± 0.94
Total dietary fibres	22.53 ± 0.38	21.81 ± 0.72
Available carbohydrates	13.00 ± 0.74	11.05 ± 1.94
Non protein nitrogen/total nitrogen	$24.8\%\pm1.5\%$	$28.4\% \pm 1.1\%$

• Non-protein nitrogen increased:

Higher protein bioavailability

- Fat content decreased
- Other nutrients remained the same

A: Fermented and non-fermented broth

Component	NFB	FB
Crude protein	46.56 ± 2.43	47.37 ± 1.49
Total ash	12.65 ± 0.34	12.78 ± 0.08
Crude fat	6.26 ± 0.04	(6.00 ± 0.01)
Soluble dietary fibres	3.20 ± 0.46	4.02 ± 0.69
Insoluble dietary fibres	19.33 ± 0.70	17.79 ± 0.94
Total dietary fibres	22.53 ± 0.38	21.81 ± 0.72
Available carbohydrates	13.00 ± 0.74	11.05 ± 1.94
Non protein nitrogen/total nitrogen	$24.8\%\pm1.5\%$	$\textbf{28.4\% \pm 1.1\%}$

Microorganisms	N (CFU/g) in NFB	N (CFU/g) in FB
Coliform bacteria	<10	<10
Escherichia coli	<100	<100
Staphylococcus aureus	<100	<100
Bacillus cereus	<100	<100
Clostridium perfringens	<100	<100
Yeast	<10	<10
Moulds	<10	<10
Salmonella spp. *	Neg. in 10 g	Neg. in 10 g
L. monocytogenes *	Neg. in 10 g	Neg. in 10 g

•	Non-protein	nitrogen
	increased:	

Higher protein bioavailability

- Fat content decreased
- Other nutrients remained the same
- No pathogenic bacteria

- TPC and TEAC in Water extracts higher than in Ethanol extracts
- Water extracts: 33% decrease in TPC and 35% decrease in TEAC
- Ethanol extracts: 45% increase in TPC and 30% increase in TEAC

- TPC and TEAC in Water extracts higher than in Ethanol extracts
- Water extracts: 33% decrease in TPC and 35% decrease in TEAC
- Ethanol extracts: 45% increase in TPC and 30% increase in TEAC

- TPC and TEAC in Water extracts higher than in Ethanol extracts
- Water extracts: 33% decrease in TPC and 35% decrease in TEAC
- Ethanol extracts: 45% increase in TPC and 30% increase in TEAC

- TPC and TEAC in Water extracts higher than in Ethanol extracts
- Water extracts: 33% decrease in TPC and 35% decrease in TEAC
- Ethanol extracts: 45% increase in TPC and 30% increase in TEAC

- TPC and TEAC in Water extracts higher than in Ethanol extracts
- Water extracts: 33% decrease in TPC and 35% decrease in TEAC
- Ethanol extracts: 45% increase in TPC and 30% increase in TEAC

- NFB and FB ethanol extracts (3 mg DW/mL):
- FB ethanol extracts (1.5 mg DW/mL):

 NFB and FB ethanol extracts (3 mg DW/mL):

20% and 40% decrease

FB ethanol extracts (1.5 mg DW/mL): 30% decrease

 NFB and FB ethanol extracts (3 mg DW/mL):

20% and 40% decrease

FB ethanol extracts (1.5 mg DW/mL):

30% decrease

Condition	F/OD
Yeast cells	3.37 ± 0.54
Yeast cells + menadione (1 h)	13.8 ± 0.63
Yeast cells + ethanol extract of FB (2 h) + menadione (1 h)	5.71 ± 1.85 *

Lipid Peroxidation:

•Exposure to FB ethanol extract:

 NFB and FB ethanol extracts (3 mg DW/mL):

20% and 40% decrease

FB ethanol extracts (1.5 mg DW/mL):

30% decrease

Condition	F/OD
Yeast cells	3.37 ± 0.54
Yeast cells + menadione (1 h)	13.8 ± 0.63
Yeast cells + ethanol extract of FB (2 h) + menadione (1 h)	5.71 ± 1.85 *

Lipid Peroxidation:

•Exposure to FB ethanol extract:

Decreased oxidative damage

Water extracts: SV/NFV				
Proteins	Increase	Decline	Process	Why?
Gnd2		+	Glutathione metabolism	Higher cellular oxidative stress
Rpl14a, Rpl13b	+		Autophagy	Degradation of intracellular constituents
Rvb1, Gua1	+		DNA damage & repair, Purine biosynthesis	Need for nucleotide base synthesis
Pho3	+		Riboflavin metabolism	Antioxidative action to combat ROS

Ethanol extracts: SE/NFE

Proteins	Increase	Decline	Process	Why?
Gnd2	+		Glutathione metabolism	Lower cellular oxidative stress
Gsh2		+	Glutathione biosynthesis	Lower need for glutathion
Rpl14a, Cue5		+	Autophagy	Reduced cell components' damage
Nas2, Nas6, Cub1		+	Proteasome function	Reduced protein damage
Cub1, Gua1, Ade13, Ura6		+	DNA repair/ purine, pyrimidine biosynthesis	Less DNA damage/need for nucleotides
Rib5		+	Riboflavin biosynthesis	Lower oxidative stress exposure

Significant separation of:

Jožef

Stefan

Institute

No. 1000-17-0106 Proj.no. J4-1773, P1-0143 and P4-0116

Significant separation of:

- Yeast treated with fermented/nonfermented *Spirulina*
- Yeast treated with ethanol/water extracts

No. 1000-17-0106 Proj.no. J4-1773, P1-0143 and P4-0116

Significant separation of:

- Yeast treated with fermented/nonfermented *Spirulina*
- Yeast treated with ethanol/water extracts

Greater antioxidant efficiency of:

• Ethanol vs. water extracts in F vs. NF Spirulina

No. 1000-17-0106 Proj.no. J4-1773, P1-0143 and P4-0116

Significant separation of:

- Yeast treated with fermented/nonfermented *Spirulina*
- Yeast treated with ethanol/water extracts

Greater antioxidant efficiency of:

• Ethanol vs. water extracts in F vs. NF Spirulina

Essential role of fermentation:

• Lowering of cell stress response related proteins expression.

Slovenian