Surface Catalysis Beyond the Binding Site (.... theory and practice in catalyst design)

Pregl Colloquium Lecture National Institute of Chemistry Ljubljana, Slovenia 18 May 2023

KEMIJSKI INŠTITUT

Kemijski inštitut Hajdrihova 19, 1000 Ljubljana www.ki.si

Predavanja Preglovi kolokviji

Fritz Pregl The Nobel Prize in Chemistry 1923

Born: 3 September 1869, Laibach, Austria-Hungary (now Ljubljana, Slovenia)

Died: 13 December 1930, Graz, Austria

Affiliation at the time of the award: Graz University, Graz, Austria

Prize motivation: "for his invention of the method of microanalysis of organic substances"

 Catalysts everywhere with binding centers and some surroundings

 A cigar lighter (1823)

 Hydrogenation of fats/oils (1900)

 Nitrogen fixation (ammonia synthesis) (1910)

 Clean/efficient fuels (fossil/biogenic)

 Hydrogen production

 Emissions control
 Environmental remediation

 Fuel cells
 Polymer synthesis

 Biological catalysts (enzymes)

Zeolites

Metal-organic frameworks

Metal/oxide clusters/nanoparticles

Tailoring the binding center and its environment.....

Catalysts everywhere with a binding center and some surroundings

Tailoring the <u>binding center</u> and its <u>environment</u>....

(1 October 2022) Rocky Mountain National Park

.... the energy dialects of molecules ... as they make and break chemical bonds

Turnover Rates (per active center)

$$\sim exp (-\Delta G^{\ddagger}/k_B T) \cdot f(C_i)$$

Active centers (metal atoms, active O-atoms, protons)

Voids

.... the energy dialects of molecules ... as they make and break chemical bonds

We are experimentalists abetted by theory

e

Turnover Rates (per active center)

$$\sim exp (-\Delta G^{\ddagger}/k_B T) \cdot f(C_i)$$

Things like this will appear throughout

e⁻

Reaction coordinate diagrams

Turnover Rates (per active center)

$$\sim \exp\left(-\Delta G^{\dagger}/k_{B}T\right) \cdot f(C_{i})$$

Things like this will appear throughout

Reaction coordinate diagrams

Things like this will appear throughout

Experimental inquiries into chemical dynamics and the identity and kinetic relevance of bound species and elementary steps

surface coordination

surface coordination

J. Phys. Chem C108 (2004) 4094

Smaller clusters have more (and sharper) edges

surface coordination

J. Phys. Chem C108 (2004) 4094

Smaller clusters have more (and sharper) edges

Smaller clusters have more (and sharper) edges

..... Density Functional Theory

Oxidative dehydrogenation

Transition state

H

Mo

Н

Мо

LUMO

HOMO

H

Exploiting solids with known structure ... and descriptors of reactivity

methanol to formaldehyde

... compositional diversity ... similar and known structures

> Prashant Deshlahra Stephanie Kwon

Exploiting solids with known structure ... and descriptors of reactivity

methanol to formaldehyde

... compositional diversity ... similar and known structures

> Prashant Deshlahra Stephanie Kwon
Exploiting solids with known structure ... and descriptors of reactivity

Exploiting solids with known structure ... and descriptors of reactivity

DFT-derived C-H bond activation barriers (alcohols, paraffins, olefins, ketones,...)

Reactivity Descriptors as Energies: Oxidation Catalysis

redox-active oxides (H-atom transfer)

... "late" transition states with respect to transfer of *H* (to catalyst)

Reactivity Descriptors as Energies: Oxidation Catalysis

redox-active oxides (H-atom transfer)

... "late" transition states with respect to transfer of *H* (to catalyst)

... "late" transition states with respect to transfer of H (to catalyst) H⁺ (from catalyst)

... "late" transition states with respect to transfer of H (to catalyst) H⁺ (from catalyst)

solid acids with known structure

polyoxometalates

Reaction rate constant

Reaction rate constant

Combining the binding point and its environment

Combining the binding point and its environment

Michele Sarazen

polyoxometalates

 H^{+} H^{+

crystalline heterosilicates

H⁺ Si^{4‡}⁰ M³⁺¹ M= Al,Fe,Ga,B Construct and probe specific "binding points"

Design solvating environments around "binding points"

Michele Sarazen

polyoxometalates

crystalline heterosilicates

polyoxometalates

crystalline heterosilicates

polyoxometalates

..... the combined effects of confinement and acid strength

..... the combined effects of confinement and acid strength

..... same binding point (acid strength) diverse confining voids

C-C bond formation from alkenes: confinement effects for aluminosilicates of similar acid strength

Michele Sarazen

acid strength

similar

Reactivity and selectivity in alkene-alkanal reactions when acid strength matters <u>for selectivity</u>..... Reactivity and selectivity in alkene-alkanal reactions when acid strength matters <u>for selectivity</u>

Shuai Wang

Reactivity and selectivity in alkene-alkanal reactions when acid strength matters <u>for selectivity</u>

Reactivity and selectivity in alkene-alkanal reactions when acid strength matters <u>for selectivity</u>

Reactivity and selectivity in alkene-alkanal reactions when acid strength matters <u>for selectivity</u>.....

Weaker acids favor channels mediated by less "charged" transition states

VASP, PBE, PAW5

Reactivity and selectivity in alkene-alkanal reactions when acid strength matters <u>for selectivity</u>.....

PBE+D3BJ, PAW5, 473 K, 1 bar, with respect to a bare proton site and gaseous reactants VAS

VASP, PBE, PAW5

Reactivity and selectivity in alkene-alkanal reactions when confinement effects do NOT matter for selectivity_.....

Reactivity and selectivity in alkene-alkanal reactions when confinement effects do NOT matter for selectivity_.....

Reactivity and selectivity in aldol condensation reactions when size is NOT all that matters for selectivity_.....

*DFT: VASP, RPBE+D3, PAW5

^{*}DFT: VASP, RPBE+D3, PAW5

... confinement matters even without a binding point

Silicates without defects or grafting points catalyze NO-O₂ reactions at ambient temperature

... with same kinetic trends as homogeneous routes

$$r = k (NO)^2 (O_2)$$

ONO NO 0, CHA SIL

Nancy Artioli Matteo Maestri

... confinement matters even without a binding point

Silicates without defects or grafting points catalyze NO-O₂ reactions at ambient temperature

... with same kinetic trends as homogeneous routes

 $r = k (NO)^2 (O_2)$

Nancy Artioli Matteo Maestri

... confinement matters <u>even</u> without a binding point

... confinement matters <u>even</u> without a binding point

... confinement matters <u>even</u> without a binding point

... confinement matters even without a binding point

Guiding molecules across energy landscapes

"Environmental" effects in catalysis ... the outer sphere effects

liquids

.... more flexible and diverse in composition

inorganic hosts

"Environmental" effects in catalysis ... the outer sphere effects

liquids

.... more flexible and diverse in composition

dense adlayers

and "anti-solvents"

inorganic hosts

Catalysis: Guiding molecules across energy landscapes and the tools that shape such landscapes

... connect reactivity/selectivity with energies (not just compositions or structures)

"Staring at transition states ..."

"Staring at transition states ..."

(not just compositions or structures)

Surface catalysis channeling molecules through energy landscapes

THE BERKELEY

DOE Basic Energy Sciences BP. p.l.c. Chevron Technology Company

Nancy Artioli Hale Ay **Corneliu Buda Cathy Chin Prashant Deshlahra Stanley Herrmann** Stephanie Kwon Will Knaeble Matteo Maestri Matt Neurock Michele Sarazen Shuai Wang Junmei Wei

CRO

may your mountain passes never be steep

Bailey, Colorado (2022)