

Real World Data to aid in the transition from cancer patient to cancer survivor - Experiences from PERSIST

dr. Izidor Mlakar, University of Maribor

Project PERSIST

Grant No.: 875406 Timeframe: 01.01.2020 – 28.02.2023 **Project coordinator: GRADIANT Research & Innovation Action (TRL3-5)**

- •Fundacion Centro Tecnoloxico De Telecomunicacions de Galicia (GRAD)
- •Servizo Galego de Saude (SERGAS)
- It Corporate Solutions Spain SL (DXC)
- •EMODA Software (EMO)
- •Univerza v Mariboru (UM)
- •Univerzitetni klinicni center Maribor (UKCM)
- •Haute Ecole Specialisee De Suisse Occidentale (HES-SO)
- •Latvijas Universitate (UL)
- •Cyberethics Lab SRLS (CEL)
- •Centre Hospitalier Universitaire de Liege (CHU)
- •Symptoma GMBH (SYMP)
- •Rubynanomed, Unipessoal LDA (RUBY)
- National Patients Organisation (NPO)

persis

PERSIST Ecosystem

4. P

Symmetric Model of Interaction on inp

Automated Speech Recognition (ASR) - SPRE

- → ASR system SPREAD is built from the following boxes
 - + end-to-end Connectionist Temporal Classification-based deep neural model.

			Preprocessing		
	Neural Acoustic Model	Trai	ning CTC loss	Deep Neural Model (acoustic)	
Training data	Testing data	Training time	Model size	Platform	
		SLOVENIAN			
1869.14 hours	478 hours	152 days	2.6 GB	HPC GPU 4xA6000	1
Batch WER	Test WER				
1.5%	0.7%				1
		LATVIAN			
782.65 hours	197.08 hours	93 days	2.6 GB	HPC GPU 2xRTX8000	
Batch WER	Test WER				
2.03%	0.35%				
		ENGLISH			
1272.87 hours	319.97 hours	81 days	2.6 GB	HPC GPU 8xA100	
Batch WER	Test WER				
0.7%	2.92%				_
		SPANISH			
1406.84 hours	364.79 hours	35 days	2.6 GB	HPC GPU 8xA100	
Batch WER	Test WER				
2.2%	5.5%				
		RUSIAN			
2796.00 hours	709.42 hours	145 days	2.6 GB	HPC GPU 6xA100	
Batch WER	Test WER				
9.1%	2.7%				
		FRENCH			
1272.48 hours	335.49 hours	185 days	2.6 GB	HPC GPU 4xV100	
Batch WER	Test WER				
5.3%	7.6%				

U	t	
A)

+ A spell checker to mitigate the issue of WER and precision in wild (WER does not account for the variables that impact speech recognition).

+ A a language model to further mitigate the issue of WER

Slovenian language

Dictionary size: 21	15.851 unique word	ds. (a list of fully	correct words in a	given languag	e)	
Dataset size	N sentences	N unique words	Training time	ErrRate	Model size	Platform
15.1 GB	90461818	23202569	56min	3.51%	5.6GB	HPC 2xRTX8000
Latvian language	9					

Dictionary size: 384.448 unique words (a list of fully correct words in a given language)

Dataset size	N sentences	N unique words	Training time	ErrRate	Model size	Platform
654 MB	5478552	3210779	63min	4.75%	600MB	HPC 2xRTX8000

English language

Dictionary size: 826.491 unique words (a list of fully correct words in a given language)

Dataset size	N sentences	N unique words	Training time	ErrRate	Model size	Platform
2 GB	64733542	72410719	71min	2.6%	1.5 GB	HPC 2xRTX8000

ES language

Dictionary size: 636.598 unique words (a list of fully correct words in a given language)

Dataset size	N sentences	N unique words	Training time	ErrRate	Model size	Platform
1.253 GB	10752825	879921	71min	5.62%	1.369 GB	HPC 2xRTX8000

RU language

Dictionary size: 5.074.140 unique words (a list of fully correct words in a given language)

		· · ·	*	• •	• /		-
Dataset size	N sentences	N unique words	Training time	ErrRate	Model size	Platform	
1.435 GB	8566970	1807880	71min	2.20%	2.23 GB	HPC 2xRTX8000	

FR language

Dictionary size: 742.308 unique words (a list of fully correct words in a given language)

Dataset size	N sentences	N unique words	Training time	ErrRate	Model size	Platform
6.588 GB	82382142	16308542	71min	4.32%	948 MB	HPC 2xRTX8000

Symmetric Model of Interaction on output PLATOS Speech Synthesis (Text-to-Speech (TTS))

→ TTS models used the Tacotron 2 architecture to generate mel spectrograms.

Encoder	Decoder	Attention	Mel-Post Network
Kernel size = 5	RNN dim = 1024	RNN dim = 1024	Embedding dim = 512
N convolutions = 3	Pre-net dim=256	Dim = 128	Kernel size = 5
Embedding dim= 512	Attention dropout = 0.1	N filters = 32	N convolutions = 5
	Dropout = 0.1	Kernel size = 31	
	Steps = 1000		
	Gate threshold = 0.5		

Tacatron 2 configuration

System	Min	Max	Mean	Median	Q1	Q3
Original recordings	60.0	100.0	93.67	100.0	91.0	100.0
TTS-3	6.0	100.0	51.35	53.0	35.0	68.0
TTS-4	0.0	65.0	26.44	25.0	15.0	33.0

Blizzard 2013 subset dataset: The MUSHRA Evaluation test for TTS-3 (Tacotron+Waveglow) and TTS-4 (Tacotron+Griffin lim)

System	Min	Мах	Mean	Median	Q1	Q3
recordings	50.0	100.0	92.08	95.0	89.75	100.0
TTS-2	5.0	100	64.07	70.5	43.0	86.75
TTS-3	25.0	100.0	74.41	79.0	63.5	90.0
TTS-4	0.0	100.0	28.80	25.5	12.25	45.0

LJSpeech: MUSHRA Evaluation test for TTS-2 (WaveRNN), TTS-3 (Tacotron+Waveglow) and TTS-4 (Tacotron+Griffin lim)

For all PERSIST languages, we developed 2 TTS systems: TTS-3 (Tacotron+Waveglow) and TTS-4 (Tacotron+Griffin lim). For the English language we also developed a third system: TTS-2 (Tactron + WaveRNN).

Collecting Real World Data with a Personalized Chat (complementing PROs)

Symptom Extraction from Diaries

- get the transcription text.
- \rightarrow The results are stored on the FHIR server.

→ In the flow, we extract audio from the patient video. That audio is then sent to the automatic speech recognition engine to

Evaluating the feature extraction pipeline

Analysing language complexity using the Linguistic Feature Extraction Pipeline

Observable cues	SymptomMed	lia recordings		DAIC-WOZ recordings			
	Depressive disorder	Without	r	Depressive disorder	Without	r	
	M(SD)	M(SD)		M(SD)	M(SD)		
A6.1.1: Sentence length (avg = <u>24.9)*</u>	8.08 (2.66)	7.70 (1.80)	0.09	9.16 (2.84)	9.92 (3.25)	-0.13	
A6.1.2: Sentence complexity (> 1.5 for high)*	1.32 (0.18)	1.28 (0.11)	0.14	1.22 (0.09)	1.21 (0.09)	0.08	
A6.2.1: Lexical diversity (> 0.7 for high)*	0.13 (0.01)	0.14 (0.01)	-0.59	0.14 (0.00)	0.15 (0.01)	-0.41	
A6.2.2: Lexical sophistication (> 16.25 for	2.77 (0.73)	2.47 (0.53)	0.24	3.29 (1.02)	3.51 (1.18)	-0.11	
hign)* A6.2.3: Lexical density (> 65 for <u>high)*</u>	36.72 (4.79)	36.06 (3.02)	0.09	35.99 (2.58)	35.49 (2.24)	0.11	
A6.2.3: Lexical density (> 65 for high)*	36.72 (4.79)	36.06 (3.02)	0.09	35.99 (2.58)	35.49 (2.24)	0.11	

Notes. M = mean, SD = standard deviation, r = effect size of the difference between recordings of depressive disorder and those without within each dataset. <math>* = The values indicate expected result on general population (for more information see Appendix A.1)

Prosodic and voice quality cues related to Engagement and Quality of verbal communication using the Speech Feature Extraction Pipeline

Observable cues	SymptomMed	lia recordings		DAIC-WOZ recordings			
	Depressive disorder	Without	r	Depressive disorder	Without	r	
	M(SD)	M (SD)		M(SD)	M (SD)		
B2: Engagement in verbal co	mmunication						
Pitch (Hz)	150.51757 (35.16333)	175.06171 (45.55554)	- 0.31	161.71342 (38.62093)	149.71620 (37.78544)	0.16	
Local jitter (%)	0.02236 (0.00356)	0.02071 (0.00216)	0.30	0.01450 (0.00350)	0.01660 (0.00540)	- 0.24	
Intensity (Db)	40.55071 (4.29640)	36.28843 (7.91860)	0.37	49.46458 (4.97600)	49.22040 (4.37559)	0.03	
B5: Decreased voice quality							
Local absolute jitter (sec)	0.00017 (0.00006)	0.00013 (0.00004)	0.35	0.00010 (0.00005)	0.00013 (0.00006)	- 0.24	
Local shimmer (%)	0.12571 (0.01542)	0.13114 (0.01123)	- 0.21	0.07208 (0.01574)	0.07927 (0.01738)	- 0.22	
Local dB shimmer (dB)	1.19400 (0.12285)	1.23007 (0.09239)	- 0.18	0.67625 (0.16521)	0.74633 (0.17961)	- 0.21	
Harmonics-to-noise ratio (HNR)	10.71571 (2.15857)	10.35021 (1.22188)	0.12	13.83333 (2.28963)	12.80000 (2.27408)	0.23	

Notes. M = mean, SD = standard deviation, r = effect size of the difference between recordings of depressive disorder and those without within each dataset.

Observable cues	Sym p tom Me	dia recordings		DAIC-WOZ	recordings	
	Depressive disorder	Without	r	Depressive disorder	Without	r
	M(SD)	M (SD)		M (SD)	M (SD)	
C1: Occurrence of facial exp	ressions (Frame	: (%))				
Emotion - Surprise	1.23 (1.36)	1.77 (1.31)	- 0.20	1.31 (1.85)	0.55 (0.62)	0.36
Emotion - Anger	0.053 (0.08)	0.049 (0.07)	0.03	1.52 (3.96)	0.82 (1.15)	0.16
Emotion - Fear	2.18 (1.62)	2.84 (2.10)	- 0.19	12.33 (9.55)	10.71 (7.06)	0.11
Emotion - Happiness	5.80 (9.33)	10.67 (17.40)	0.20	11.66 (9.62)	9.34 (6.39)	0.17
Emotion - Sadness	8.12 (6.38)	10.82 (5.76)	0.23	20.62 (6.91)	18.11 (9.41)	0.16
Emotion - Disgust	25.00 (17.51)	23.46 (24.84)	0.04	20.49 (14.60)	15.71 (8.68)	0.24
C2: Intensity of facial expressions (Intensity (0 – 5 point))						
Emotion - Surprise	1.79 (0.64)	1.81 (0.22)	0.03	1.81 (0.35)	1.79 (0.22)	0.04
Emotion - Anger	0.67 (0.81)	0.87 (0.69)	- 0.14	0.86 (0.36)	0.78 (0.26)	0.15
Emotion - Fear	1.42 (0.24)	1.55 (0.20)	0.31	1.50 (0.31)	1.36 (0.12)	0.37
Emotion - Happiness	1.36 (0.44)	1.37 (0.46)	- 0.01	1.45 (0.19)	1.37 (0.16)	0.23
Emotion - Sadness	1.61 (0.18)	1.66 (0.18)	- 0.14	1.77 (0.35)	1.58 (0.20)	0.39
Emotion - Disgust	0.88 (0.13)	0.97 (0.18)	- 0.30	0.83 (0.12)	0.78 (0.13)	0.23
C3: Occurrence and emotion	al variability					
Positive emotions (Frame (%))	5.80 (9.33)	10.67 (17.40)	- 0.20	11.66 (9.62)	9.34 (6.39)	0.17
Negative emotions (Frame (%))	36.57 (18.77)	38.93 (30.05)	0.05	56.26 (27.00)	45.90 (20.93)	0.24
Positive emotions (Intensity (0 - 5 point))	1.36 (0.44)	1.37 (0.46)	- 0.01	1.45 (0.19)	1.37 (0.16)	0.24
Negative emotions (Intensity (0 - 5 point))	1.14 (0.29)	1.26 (0.23)	- 0.24	1.36 (0.16)	1.26 (0.11)	0.39
Total number of emotion variability	4.43 (0.94)	4.93 (1.00)	- 0.26	4.33 (0.49)	4.27 (0.46)	0.08

Visual cues related to facial emotional expressivity using the Visual Extraction Pipeline

Votes. M = mean, SD = standard deviation, r = effect size of the difference between recordings of depressive lisorder and those without within each dataset.

Multi-Modal Feature Extraction and Depression Classification

Evaluation of AI Algorithms

Depression classification was tested with two different multi-modal datasets:

- → (Distress Analysis Interview Corpus Wizard-of-Oz (DAIC-WOZ) dataset as a reference dataset for multi-modal depression classification;
- \rightarrow SymptomMedia dataset as a test database)

DAIC-WOZ DB Dataset							Sym	ptomMedia	Datase	:t		
Modality	F1-Score	Recall	Precision	MSE	RMSE	MAE	F1-Score	Recall	Precision	MSE	RMSE	MAE
T+A	0.38	0.39	0.55	0.61	0.78	0.61	0.46	0.46	0.46	0.53	0.73	0.53
T+V	0.42	0.41	0.55	0.59	0.76	0.59	0.42	0.43	0.42	0.57	0.75	0.57
A+V	0.56	0.55	0.6	0.45	0.67	0.45	0.37	0.39	0.38	0.6	0.77	0.6
T+A+V	0.46	0.45	0.61	0.54	0.73	0.54	0.4	0.43	0.41	0.57	0.75	0.57

Performance and error metrics for SVM+RF with SVM Late Fusion

	DAIC-WOZ DB Dataset					SymptomMedia Dataset						
Modality	F1-Score	Recall	Precision	MSE	RMSE	MAE	F1-Score	Recall	Precision	MSE	RMSE	MAE
T+A	0.38	0.39	0.55	0.61	0.78	0.61	0.46	0.46	0.46	0.53	0.73	0.53
T+V	0.42	0.41	0.55	0.59	0.76	0.59	0.42	0.43	0.42	0.57	0.75	0.57
A+V	0.46	0.45	0.61	0.54	0.73	0.54	0.3	0.36	0.29	0.64	0.8	0.64
T+A+V	0.44	0.43	0.59	0.56	0.75	0.56	0.4	0.43	0.41	0.57	0.75	0.57

Performance and error metrics for SVM+RF with RF Late Fusion

DAIC-WOZ DB Dataset						SymptomMedia Dataset						
Modality	F1-Score	Recall	Precision	MSE	RMSE	MAE	F1-Score	Recall	Precision	MSE	RMSE	MAE
T+A	0.53	0.57	0.51	0.27	0.52	0.48	0.56	0.57	0.58	0.37	0.61	0.47
T+V	0.52	0.55	0.5	0.29	0.54	0.49	0.45	0.46	0.46	0.36	0.6	0.48
T+A+V	0.53	0.55	0.52	0.35	0.59	0.51	0.56	0.57	0.58	0.37	0.6	0.47

Performance and error metrics for LSTM without Gating

DAIC-WOZ DB Dataset							SymptomMedia Dataset					
Modality	F1-Score	Recall	Precision	MSE	RMSE	MAE	F1-Score	Recall	Precision	MSE	RMSE	MAE
T+A	0.45	0.43	0.57	0.33	0.58	0.48	0.48	0.5	0.5	0.35	0.59	0.44
T+V	0.42	0.41	0.55	0.35	0.59	0.49	0.5	0.5	0.5	0.38	0.61	0.47
T+A+V	0.64	0.66	0.64	0.32	0.57	0.45	0.48	0.5	0.5	0.34	0.58	0.44

Performance and error metrics for LSTM with Gating

CDSS Inference Engine: Use of RealWorld Data in Practice

Alert Mechanism flow in PERSIST

- Questionnaire responses arrives at FHIR server
- Inside Workbench requests inference automatically via CDS Hooks
- Response of inference engine in CDS Hooks response structure
- Auto-generates Flag resource upon inference response
- MQTT notification is sent to clinician app

PERSIST Multicenter Clinical Trial

mHealthApp will collect objective markers (vital signs) and markers (PREMs/PROMs and subjective symptoms of depression).

The clinical decision support system will enable oncologist to personalize treatment and care plans/follow-up for efficient management of patients.

Hypothesis: Performing a comparison at the beginning and at the end of the intervention, participants will significantly increase their self-efficacy following the personalized intervention supported by the mHealthApp.

Subjects: 80 Breast Cancer Survivors, 80 Colorectal Cancer Survivors, Two subgroups (chemotherapy and nonchemotherapy). At least 33% of patients that have had chemotherapy.

Design: A single-case experimental prospective, cross-over deisgn,, 6 months follow up

Latvia

Belgium

Public Study Protocol ISRCTN97617326

Slovenia

Spain

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 875406

UL (University of Latvia)

CHU (Centre Hospitalier Universitaire De Liège)

UMC (University Medical Centre Maribor)

SERGAS (Servizo galego de saude)

Riga East Clinical University Hospital (Latvian Oncology Center)

Centre Hospitalier Universitaire De Liege

University Medical Centre Maribor

Complejo Hospitalario Universitario de Ourense

PERSIST Multicenter Clinical Trial, Recruitment & Droput

CLINICAL PARTNER	RECRUITED PATIENTS	MEAN AGE	BREAST CANCER	COLORECTAL CANCER	MALE	FEMALE
UL	46	54	24	22	7	39
UKCM	40	57	20	20	11	29
CHU	41	55	21	20	7	34
SERGAS	39	56	20	19	12	27
TOTAL	166	55	85	81	37	129

Droput: 26 patients (16%, mostly at the begging), for most of them a substitute was recruited

Some Reasons:

- Due to unforeseen circumstances, i.e. move to the countryside where wifi is not available.
- > Anxiety and re-living the diagnosis and treatment phase
- > Technical issues and complexity of use (i.e. never used similar tech. before)
- Burdened by diary recording and activates, and technology disturbing their lifestyle (e.g. sleep) and their rythm
- Recurrence of cancer and (new) medical issues unrelated to the trial

nilar tech. before) disturbing their lifestyle (e.g. persist PATIENT INFOGRAPHIC CLINICAL STUDY INFORMED CONSENT **PURPOSE & TYPE OF STUDY** Ï (Q) **3**≓ improve the quality of life of breast and colorectal cancer survivors. With artifici intelligence, liquid biopsy, and Big Data, experts will develop an innevative ecosystem t support physicians' decision-making and help contributing to your reintegration in society During the research, you will wear a smartwatch connected to your smartphone. **TIMELINE & PROCESS** (H **4** hospital visits in **18** months Collection of a secon Collection of a 10ml blood sample blood sample টা Review of the informatio Explanation of how to collected with your docto use the smartwate improving you health 09.21 Review of the results and Collection of the last blood information collected Review of the results of your with your doctor participation with your dector BENEFITS RISKS SIDE EFFECTS 8 $[\checkmark]$ 20 None expected, but you may Blood collection can cause some There are no expected temporary swelling and a hematoma experience an improvement off your risks chophysical health and you will round the place of the injection elp improve a platform that can **CONFIDENTIALITY & SHARING** All the collected information for research purposes will be kept confidential. Results of the research wil be shared for the surpase of the project between partners. For more information read the full form |≣¢ **YOUR RIGHTS** € participate in the study entirely voluntary study at any time Whatever your decision, you don't need to justify it Whether you choose to continue or not, the quality of your care, your medical follow-up, and your relationship the investigator or the treating doctor will not be compromised. CONTACT coordinator@gradiant.org

> funding from the European Union's Harizon 2020 research and innovatio gamement No. 875406

Activation levels of patients (PAM questionnaire)

	Score at recruitment	Score at last follow-up
N	78	78
Mean	65,10	65,71
Median	63,10	63,10
Std. Deviation	14,605	16,063
Minimum	38	37
Maximum	100	100
Percentiles 25	53,20	52,65
50	63,10	63,10
70	75,00	77,70

The PAM Score is an interval-level scale from 0-100 that correlates with one of the four levels of patient activation. PAM levels 1 and 2 indicate lower patient activation, while PAM levels 3 and 4 indicate higher patient activation

- \succ most patients level 3 or 4 of activation at both recruitment and last follow-up.
- \succ taking action and gaining control over their condition \succ no statistically significant differences were found in the activation levels

- development may be able to support patients in improving their selfmanagement skills
- \succ However, results suggest that the mHealth app under

Level	Recruitment (N=75)	Last follow-up (N=75)	P value
Level 1 n (%)	5 (6,4)	6 (7,7)	1,000
Level 2 n (%)	15 (19,2)	16 (20,5)	1,000
Level 3 n (%)	33 (42,3)	28 (35,9)	0,486
Level 4 n (%)	25 (32,1)	28 (35,9)	0,648

Conclusion:

User acceptance of mHealthApp (SUS) from patients

PERSIST Leasons Learnt

- Patients need feedback and must not be left alone.
- \succ Co-creation is much appreciated, and talking with patients discussing their issues related to trial keeps them engaged and makes the effort they put in worthwhile
- Refining features based on their remarks
- Providing feedback also on other participants in other clinical sites
- Considering patient specific context and allow for some minor deviations (i.e. during) holidays, manual data inserts, etc.)
- \succ Organize as many workshops which connect patients with technical partners, not only clinicians

2 – Include patients in the study design, especially parts related to data collection. Most patients feel that what we ask them with standardized questionaries, does not really address issues they experience or their needs they have

Notifications Summary Emotion and Questionnaire Please provide your emotional questionnaire Please provide your emotional status and nswer a questionnain Emotion and Diary 03/02/2022 03:10 Please provide your emotional ideo diary entry/ reate a video diary entr Blood Pressure 03/02/2022 03:10 Blood Pressure t is time for a blood pressure measurement It is time for a blood pressure r Blood Pressure 30/01/2022 07:20 Blood Pressure 30/01/2022 It is time for a blood pressure m Please provide your emotional status and answer a questionnaire Blood Pressure 30/01/2022 It is time for a blood pressure r Blood pressure Measure Emotion and Questionnaire Please provide your emotiona 12/2 mmHg January 29, 2022 01:04:00 Emotion and Diary 29/01/20 Please provide your emotional video diary entry. 0% yesterday Blood Pressure 29/01/2022 1 12 It is time for a blood pressure r $\mathbf{\nabla}$ New message 29/01/2022 12 Summar

/02/2022 03:10 tatus and answer a
03:10 tatus and create a
:10 easurement.
:20 easurement.
:07 easurement.
/01/2022 10:57 tatus and answer a
10:57 tatus and create a
:57 easurement.
50

PERSIST Progress and Updates

Channels and online presence

- ✓ Website: <u>https://projectpersist.com/</u>
- ✓ Facebook: https://www.facebook.com/PERSIST.H2020/
- ✓ Twitter: https://twitter.com/PERSIST H2020
- \checkmark LinkedIn: https://www.linkedin.com/company/persistoncology/
- ✓ YouTube: https://www.youtube.com/channel/UCQgPynx Nv1TlfNcg4vXNssA/

ersist

Be health **PERSISTent, the future** is in your hands

Ο

Oncology is a highly evidence-based speciality and cancer data are

