Understanding the cell-type specific function of EHMT1 in neuronal network function

Nael Nadif Kasri, PhD Donders Institute, Radboudumc Nijmegen

Kleefstra syndrome Conference, Ljubljana June 1-2 2023 iPSC-derived models for translational studies: **Opportunities and challenges**

iPSC-derived models for translational studies: **Opportunities and challenges**

iPSC-derived models for translational studies: directed differentiation

Measuring neural network activity of iPSC-derived networks

Micro-electrode arrays

Development

Measuring neural network activity of iPSC-derived networks

Synchronized Burst are observed in human brain

Probing for E/I balance in human pluripotent stem cell-derived neuronal networks

- Adapted from Yang et al., 2017
- Adapted from Shi, Z., et al., 2016

MAP2 GABA

iGABAergic neurons exhibit scalable functional inhibitory control

Mossink et. al, Mol Psych, 2022

Contribution of excitation and inhibition to **Kleefstra syndrome** neuronal network phenotypes

KS: Haploinsufficiency of the *EHMT1* gene

Discriminant analysis on all MEA parameters

- Excitatory links — Inhibitory links Reduced Inhibition

Delayed GABAergic maturation in Kleefstra neuronal networks

How do findings in a dish translate to *in vivo*?

In vivo models

Altered development of GABAergic neurons in *EHMT1*^{+/-} mice?

Expression of *EHMT1*

Single-cell data expression post-mortem material

Lot de Wit, unpublished

Investigating the cell type-specific function of EHMT1 using iPSC models

BRAINmodel

- Development of robust stem cell-based 2D and 3D brain models
- Increase robustness, complexity, predictability and scalability

BRAINmodel

- Development of robust stem cell-based 2D and 3D brain models
- Increase robustness, complexity, predictability and scalability

• Linking in vitro measurements to patient measurements

Balance Excitation-Inhibition

- Based on mechanisms: E/I imbalances drug reporpusing
- Epigenetic compounds to restore "balance"

Generate predictions about underlying cellular mechanisms

D. Schubert H. van Bokhoven T. Kleefstra

Shan Wang Eline van Hugte Katrin Linda **Chantal Schoenmakers** Astrid Oudakker Ka Man Wu **Britt Mossink** Anouk Verboven **Elly Lewerissa** Ummi Ciptasari **Rachel Mijdam** Naoki Kogo **Brooke Latour Xiuming Yuan** Emma Dyke Imke Schuurmans Nicky Scheefhals Sofia Puvogel Kim Wijnant Annemiek van de Steed

Radboudumc

- A. Bouman B. De Vries D. Koolen B. Franke
- **U Twente** M. Frega M. Van Putten

VU Amsterdam M. Verhage N. Cornelissen

Summary

Wang S. et al., in preparation

Can we identify disease/patient-specific neuronal network phenotypes?

HMT1	ANK2
MT2C	SCN1A
MARCB1	CACNA1A
1BD5 RID1A RID1B	MELAS
	NANS
	PMM2
	CDH13
ETD1A	PCDH19
ANSL1	ADNP
HD2	ANKRD11
HD3	YY1

Syndrome-specific neuronal network phenotypes

Closed circles show independent IPSC lines Open circles show CRISPR/Cas9 isogenic lines

Frega et al., Nat Comms 2019 Klein Gunnewiek et al., Cell Rep 2020 Frega et al., Cell Rep 2020 Frega et al., Cell Rep 2020 Mossink et al., Stem Cell Rep 2021 Mossink et , Mol Psych 2021 Linda et al., Autophagy 2021 Shan et al., Cell Rep 2022 Gerosa et al., Cell Rep 2022

- 15 syndromes
- 1-5 cell lines per disease
- 39 cell lines
- >1000 recordings

Syndrome-specific neuronal network phenotypes

Frega et al., Nat Comms 2019 Klein Gunnewiek et al., Cell Rep 2020 Frega et al., Cell Rep 2020 Frega et al., Cell Rep 2020 Mossink et al., Stem Cell Rep 2021 Mossink et , Mol Psych 2021 Linda et al., Autophagy 2021 Shan et al., Cell Rep 2022 Gerosa et al., Cell Rep 2022

- 15 syndromes
- 1-5 cell lines per disease

cluster km 5

0 1

• 2 • 3

• 4

• 5

2.5

0.0

UMAP1

- 39 cell lines
- >1000 recordings