

NATIONAL INSTITUTE OF CHEMISTR

CENTRE FOR THE TECHNOLOGIES OF GENE AND CELL THERAPY

Advanced treatment of genetic disorders and its translation

Roman Jerala

Department of synthetic biology and immunology National institute of chemistry Ljubljana, Slovenia

Kleefstra Syndrome Conference, Ljubljana, June 2nd, 2023

Scientific expertise & technologies at the Department of Synthetic Biology and Immunology at NIC

- We cover the research range from atoms to organisms
- Structural biology (molecular modelling, protein design, bioinformatics, cryo-EM)
- Biophysics (CD, fluorescence, luminescence, DLS, SEC-MALS, SAXS, FCS, ITC, SPR...)
- Molecular/synthetic biology/genetics (gene regulation, RNA post-processing, genome editing with CRISPR, chemical regulation)
- Cell biology: flow cytometry, confocal fluorescence microscopy, BSL2 labs, lentiviruses, AAV, LNP delivery
- Animal experiments imaging, preparation of genome engineered animals, complete biochemical analysis

Research: gene and cell therapy technologies

Cutting-edge scientific results at the National Institute of Chemistry in areas relevant for translation into therapeutics

ARTICLES

https://doi.org/10.1038/s41589-022-01136-

Design of fast proteolysis-based signaling and logic circuits in mammalian cells

Designed folding pathway of modular coiled-coilbased proteins

Jana Aupič^{1,7}, Žiga Strmšek ()^{1,2,7}, Fabio Lapenta ()^{1,3}, David Pahovnik⁴, Tomaž Pisanski ()^{5,6}, Igor Drobnak¹, Ajasja Ljubetič ()¹ & Roman Jerala () ^{1,3 ⊠}

SCIENCE ADVANCES | RESEARCH ARTICLE

SYNTHETIC BIOLOGY

Metal ion-regulated assembly of designed modular protein cages

Jana Aupič¹†, Fabio Lapenta^{1,2}‡, Žiga Strmšek¹, Estera Merljak^{1,3}, Tjaša Plaper^{1,3}, Roman Jerala^{1,2}*

ARTICLE

nature biotechnology

Design of coiled-coil protein-origami cages that self-assemble *in vitro* and *in vivo*

Ajasja Ljubetič^{1,10}, Fabio Lapenta^{1,2,10}, Helena Gradišar^{1,3}, Igor Drobnak¹, Jana Aupič^{1,4}, Žiga Strmšek¹, Duško Lainšček¹, Iva Hafner-Bratkovič^{1,3}, Andreja Majerle¹, Nuša Krivec¹, Mojca Benčina¹, Tomaž Pisanski⁵, Tanja Ćirković Veličković⁶, Adam Round^{7,8}, José María Carazo⁹, Roberto Melero⁹ & Roman Jerala^{1,3}⊙

Chemically inducible split protein regulators for mammalian cells

Erik Rihtar
1².², Tina Lebar
1², Duško Lainšček', Katarina Kores², Samo Lešnik², Urban Bren
³.² and Roman Jerala
1 15

nature

chemical biology

Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing

Duško Lainšček^{1,2,7}, Vida Forstnerič^{1,7}, Veronika Mikoličo ^{3,4}, Špela Malenšek^{1,4}, Peter Pečano ^{1,4}, Mojca Benčina o ^{1,2}, Matjaž Sever^{3,5}, Helena Podgornik^{3,6} & Roman Jeralao ^{1,2 ©}

Regulation of protein secretion through chemical regulation of endoplasmic reticulum retention signal cleavage

Arne Praznik¹², Tina Fink¹, Nik Franko⊙¹, Jan Lonzarić¹, Mojca Benčina⊙¹³, Nina Jerala¹⁴, Tjaša Plaper¹², Samo Roškar⊙¹ & Roman Jerala⊙^{1,3}

A tunable orthogonal coiled-coil interaction toolbox for engineering mammalian cells

Tina Lebar, Duško Lainšček, Estera Merljak 💿, Jana Aupič and Roman Jerala 💿 *

CelPress

nature

chemical biology

Article

TDP-43 condensation properties specify its RNA-binding and regulatory repertoire

Martina Hallegger,^{1,2,10,*} Anob M. Chakrabarti,^{1,3,10} Flora C.Y. Lee,^{1,2,10} Bo Lim Lee,⁴ Aram G. Amalietti,^{1,2,5} Hana M. Odeh,⁴ Katie E. Copley,^{4,6} Jack D. Rubien,⁴ Bede Portz,⁴ Klara Kuret,⁵ Ina Huppertz,⁷ Frédérique Rau,^{1,2,11} Rickie Patani,^{1,2} Nicolas L. Fawzi,⁸ James Shorter,^{4,6} Nicholas M. Luscombe,^{1,3,9} and Jernej Ule^{1,2,5,12,*}

> nature neuroscience

ARTICLES

Cell

ttps://doi.org/10.1038/s41589-019-0443-v

Characterizing the RNA targets and positiondependent splicing regulation by TDP-43

James R Tollervey^{1,8}, Tomaž Curk^{2,8}, Boris Rogelj^{3,8}, Michael Briese¹, Matteo Cereda^{1,4}, Melis Kayikci¹, Julian König¹, Tibor Hortobágyi³, Agnes L Nishimura³, Vera Župunski^{3,5}, Rickie Patani⁶, Siddharthan Chandran^{6,7}, Gregor Rot², Blaž Zupan², Christopher E Shaw³ & Jernej Ule¹

2 ERC projects for established biomedical scientists

Roman Jerala Jernej Ule

ERC proof-of-concept project

European Research Council

erc

Established by the European Commission

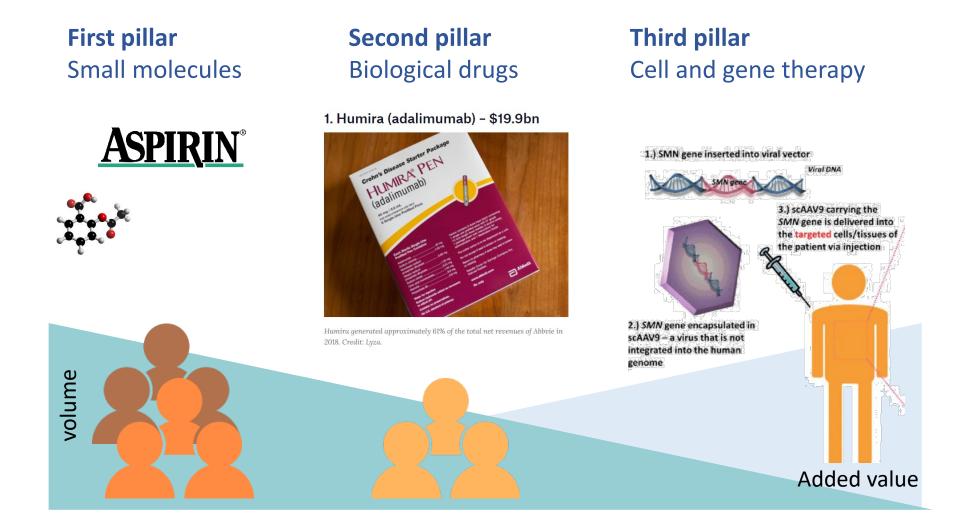
Revolutionary breakthroughs in the life sciences

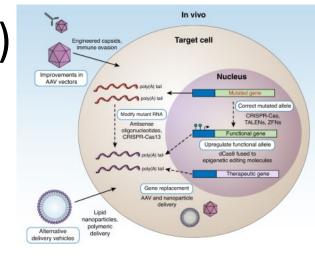
- Whole genome sequencing
- Structure of biological macromolecules (200,000 experimentally determined, 200 million 3D models)
- Genome repair (CRISPR and similar tools)
- Synthetic biology tools
- Programming human cells for therapy
- Translation into personalized medicine

WHOI F

GENOME

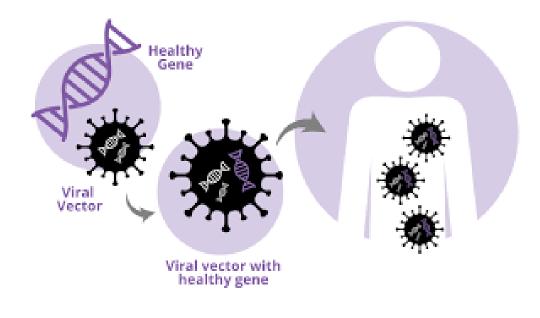
SEQUENCING




OF GENE AND CELL THERAPY

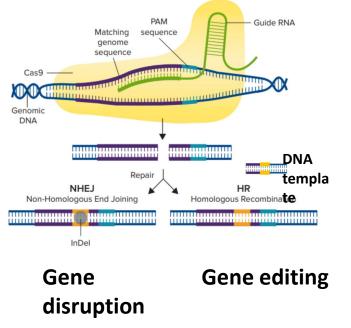
Pillars of pharmacological therapies

Therapeutic options for genetic disorders


- Replacement gene (delivery via viruses, AAV)
- Genome editing (CRISPR, ZnFingers, TALEs for selected types of mutations)
- Inactivation of dominant-negative gene (RNAi, gapmer ASOs)
- Upregulation of the healthy allele

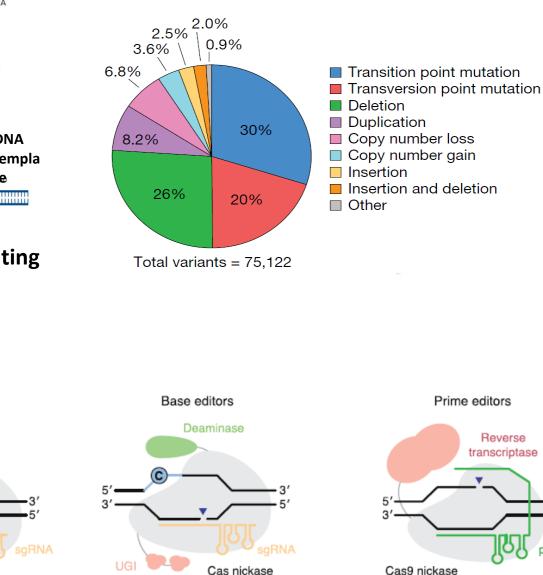
Gene replacement therapy

- Wild (healthy) copy of a gene, typically delivered through AAV
- Several therapies have been approved: Zolgensma, Luxturna, Almondys 45,


and many more already in clinical trials Duration of the effect, alternative vectors

Inborn errors of metabolism	Neurologic		
 Lipoprotein lipase deficiency Canavan disease Batten disease Mucopolysaccharidosis type I, II, IIIA, IIIB, and VI Metachromatic leukodystrophy Aromatic L-amino acid decarboxylase 	 Parkinson's disease Alzheimer's disease Spinal muscular atrophy Amyotrophic lateral sclerosis Temporal lobe epilepsy Charcot-Marie-Tooth neuropathy type 1A 		
 deficiency Familial hypercholesterolemia Acute intermittent porphyria Crigler-Najjar syndrome Tay-Sachs disease Pompe disease Galactosialidosis Ornithine transcarbamylase deficiency Glycogen Storage Disease Type I 	Ocular • Leber congenital amaurosis • Leber hereditary optic neuropathy • Choroideremia • Age-related macular degeneration • Achromatopsia (Color Blindness) • Retinitis pigmentosa • X-linked retinoschisis		
Musculoskeletal • Rheumatoid arthritis • Osteoarthritis • Muscular dystrophies (Duchenne, Becker, and Limb-Girdle) • Digital flexor tendon injury	Cancer related • Gastric cancer • Prostate cancer • Nasopharyngeal carcinoma • Multiple myeloma • Malignant melanoma		
Pulmonary Cystic fibrosis	 Non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia Irradiation-induced parotid salivary 		

CRISPR/Cas-based genome editing


Known human pathogenic genetic variants

3'

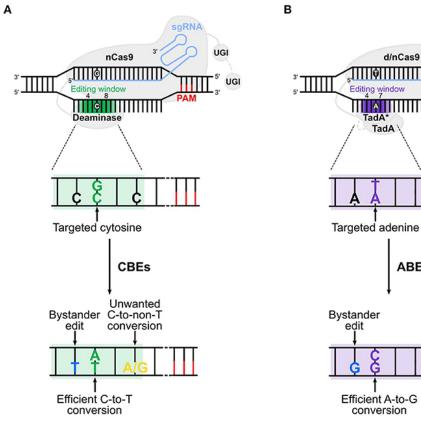
Nucleases

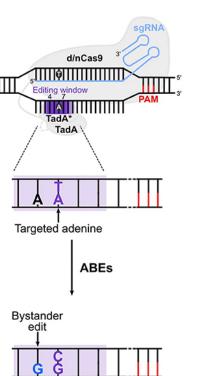
Cas nuclease

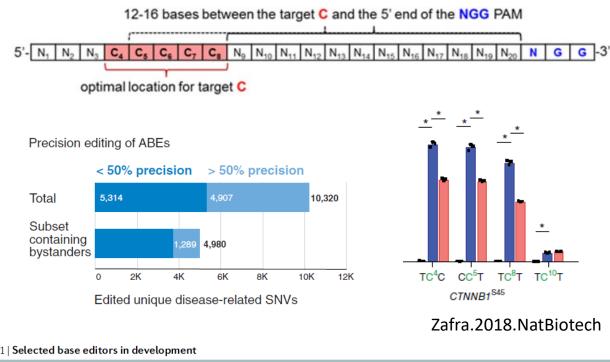
More than 100 ongoing clinical trials, based on CRISPR:

- Leukemias (ALL. AML..) -
- Angelman Syndrome
- Alzheimer's disease
- Atopic dermatitis
- Beta thalassemia
- Infection diseases (COVID, B.pertusis, hepatitis, HIV etc.)
- Cystic fibrosis
- DM _

Reverse


ပျပပ္ပ


pegRNA


- DMD
- Huntington's disease etc.

Anzalone Nature 2019

Base editors (cytosine, adenosine); $C \rightarrow T$; $A \rightarrow G$, ($G \rightarrow R$)

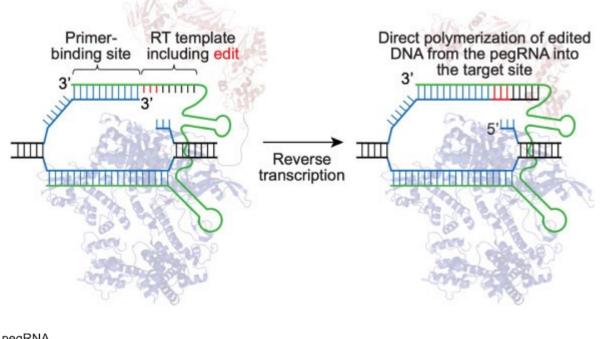
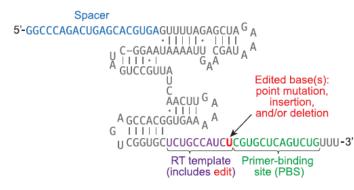
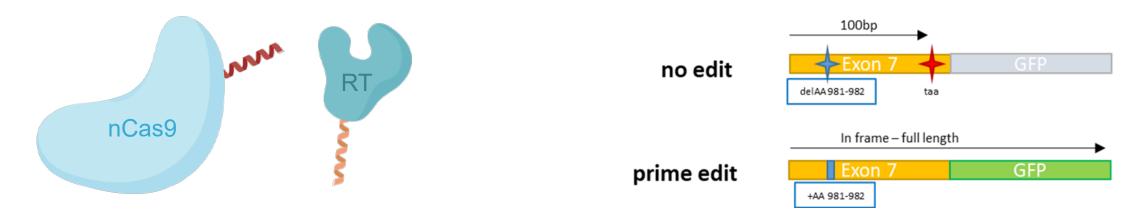


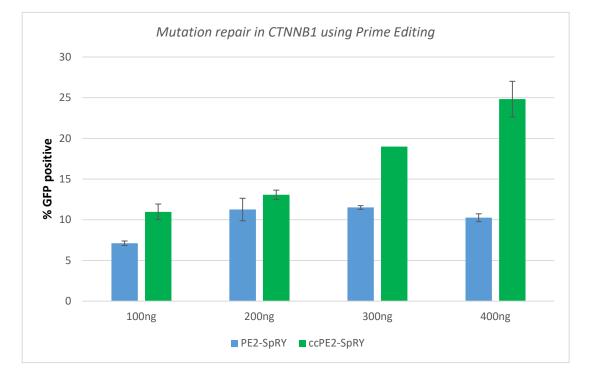
Table 1 | Selected base editors in development

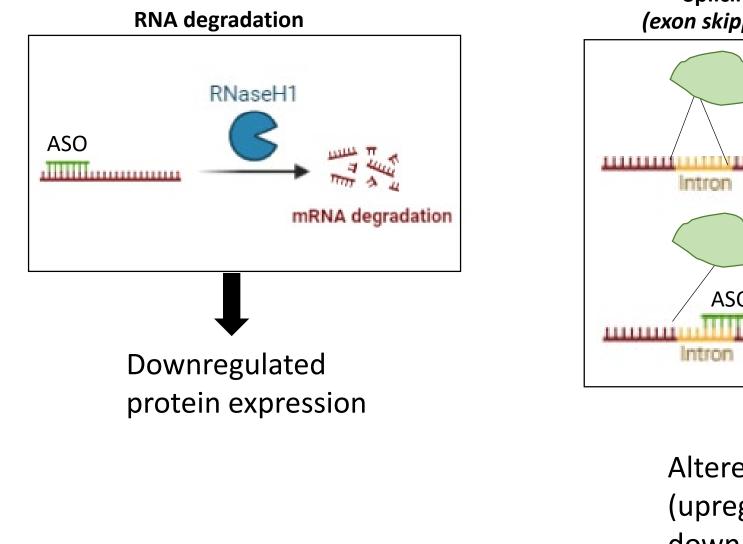
Table 1 beceted buse cutors in development					
Drug (sponsor)	Mechanism	Indication	Delivery	Status	
VERVE-101 (Verve)	PCSK9 silencing	Heterozygous familial hypercholesterolaemia	In vivo LNP	Phase Ib	
BEAM-101 (Beam)	Activation of fetal haemoglobin	Sickle cell disease; β-thalassemia	Ex vivo HSCs	IND approved	
BEAM-102 (Beam)	Correction of HbS mutation	Sickle cell disease	Ex vivo HSCs	IND-enabling studies	
BEAM-201 (Beam)	Multiplexed silenced CD7 CAR-T	T cell ALL; CD7 ⁺ AML	Ex vivo T cells	IND-enabling studies	
Unnamed candidate (Verve)	ANGPTL3 silencing	Familial hypercholesterolaemia	In vivo LNP	Preclinical	
BEAM-301 (Beam)	Correction of R83C mutation	Glycogen storage disease 1a	In vivo LNP	Preclinical	
Unnamed candidate (Beam)	Correction of G1961E mutations	Stargardt disease	In vivo AAV	Preclinical	
Unnamed candidate ^a (Wave)	Correction of mutation in SERPINA1 mRNA	α -1 antitrypsin deficiency	Subcutaneous	Preclinical	


Prime editors (all possible base changes, small insertions, deletions, combinations)

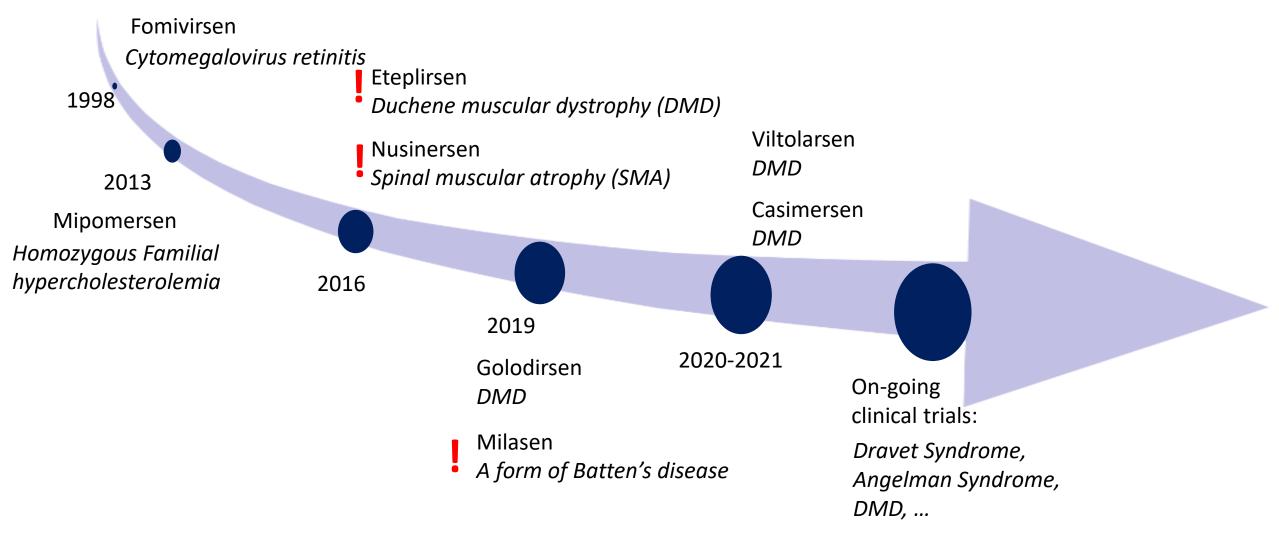
Clinical trials:

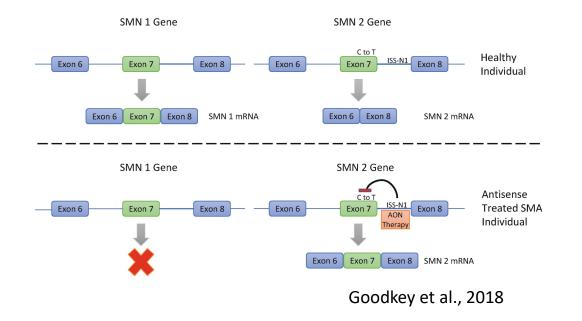

liver, eye, skin, muscular, neurodegenerative hereditary diseases, cystic fibrosis, betathalassemia, X-linked severe combined immunodeficiency and cancer.

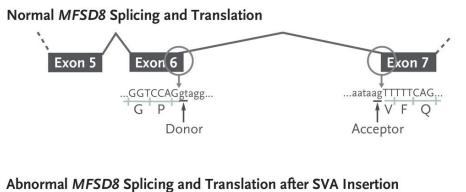

pegRNA

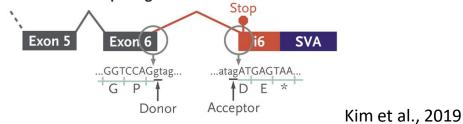

Anzalone. 2019. Nature

Refinement of PE at NIC




Mechanisms of action of antisense nucleotides (ASOs)




Splicing modulation (exon skipping or inclusion) Spliceosome Exon Intron Exon Spliceosome ASO Exon Exon Intron Altered protein (upregulation or downregulation)

Approval of ASOs for treatment of neurodevelopmental diseases

Nusinersen Spinal muscular atrophy

Disease:

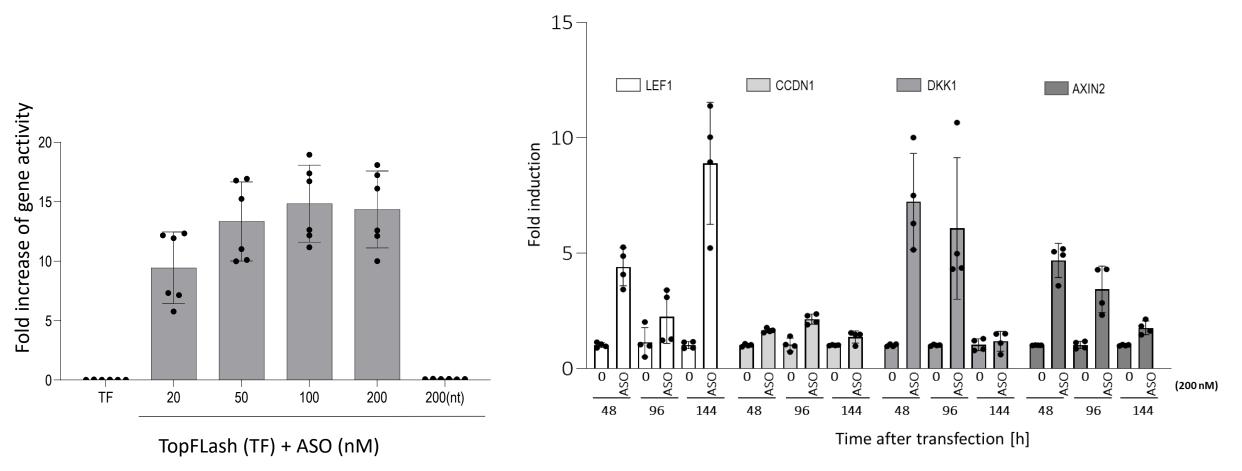
SMN1 gene mutations lead to its loss of function.

Mechanism:

Upregulation of a SMN1 gene homolog - SMN2 which is poorly expressed due to silenced splicing.

Milasen (first personalised ASO) Batten's disease

Disease:


Insertion of retrotransposon into the MFSD8 gene gives rise to alternative splicing which shifts the reading frame.

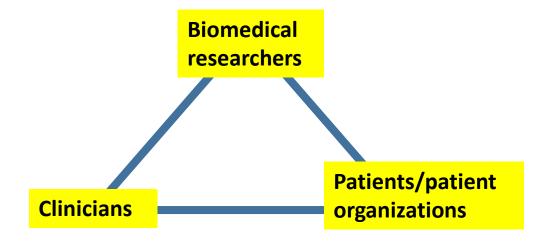
Mechanism:

Masking of alternative intronic splice site to skip retrotransposon.

Our ASO pipeline for CTNNB1

Design of ASO candidates targeting the Wnt signalling pathway Effect on β-catenin activity (TopFlash reporter system) Effect on Wnt transcriptional programme

Dose-dependent increase in β-catenin activity


Upregulation of Wnt target genes

Collaboration between researchers, clinicians and patient organizations

CTGCT CENTRE FOR THE TECHNOLOGIES OF GENE AND CELL THERAPY

The existing collaborations through joint projects and PhD students with haematologists, pediatric neurologists and internists.

- Collaboration on the development of therapy for CTNNB1 syndrome.
- Launch of CAR T therapy in Slovenia, expansion to additional cancer types & improvements

- +
 - Facilities/companies for the production of GMP reagents
- Regulatory agencies
- Health insurance companies/agencies

Research group and collaborators

- Duško Lainšček Petra Sušjan Matea Maruna Vida Forstnerič Tina Fink Erik Rihtar Anja Golob Hana Vokač Ajasja Ljubetič Mojca Benčina
- Iva Hafner Bratkovič

Samo Zver Špela Miroševič Matjaž Sever Damijan Osredkar ^k Dept. Hematology, UKC Dept Neurology, UKC

CENTRE FOR THE TECHNOLOGIES OF GENE AND CELL THERAPY

CTGCT

HORIZON-WIDERA-2022- Teaming for Excellence

Collaboration between clinicians and patients

Existing collaborations through joint projects and PhD students with haematologists, paediatric neurologists and internists.

- Preparation for the launch of CAR T therapy in Slovenia.
- Collaboration on the development of a cure for CTNNB1 syndrome.

The missing link is an organization, to translate biomedical research and prepare reagents for clinical testing.

Establishing a Centre to translate innovative scientific breakthroughs in synthetic biology and genetics for the design of future gene and cell therapies into the clinic.

Establishment of CTGCT

Modern technologies make it possible to **treat** the direct cause of an increasing number of genetic diseases.

Mission

CTGCT Centre of Excellence will **develop** gene and cell therapy **technologies**, and work to **prepare innovative drugs** for clinical trials for diseases for which we do not yet have effective treatments.

Aim

To provide Slovenian patients and clinicians with access to modern effective treatments and to increase their availability (high cost).

Improve survival possibilities and quality of life for patients.

116 applications (Phase 1 application, October 2021),36 invited (Invitation to 2nd Phase, April 2022),12 projects selected

www.ctgct.si

- development of advanced technologies;
 focus on genetic neurological and rare diseases and cancer immunotherapy
- bringing biomedical research to patients preparation of reagents according to Good Manufacturing Practice (GMP) criteria
- training for researchers
- encouraging the creation of biotech start-ups
- bringing together researchers, clinicians and patients

In 2021, >1300 developers were working on gene therapy and related technologies, raising more than \notin 22 billion.

THE HEALTHCARE LANDSCAPE

Modern technologies make it possible to treat the direct cause of an increasing number of genetic diseases.

Use of dCasRx to correct splicing defects in amyotrophic lateral sclerosis and frontotemporal dementia, a devastating neurodegenerative disease, serve as **a** roadmap for new therapies in the nervous system.

Non-viral delivery, genome editing, and targeted insertion of therapeutic genes using CRISPR (CCexo) technology. Improving the efficiency of existing technologies and preparing the technology for industrial production.

CAR T-cell

Developing CAR-T technologies for safer and more effective cancer therapies (INSPIRE, INSRTR, CCCtag). The Health Council supported the introduction of CAR-T therapies.

Impact

SCIENTIFIC Breakthrough scientific discoveries.

- HEALTH Improvements to the health of patients affected by diseases directly addressed by CTGCT as well as others via partners applying similar technological platforms.
- **ECONOMIC** More therapies at lower costs; increased national funding, patient organizations' support for fundraising.

ECONOMIC/TECHNOLOGICAL A new market for advanced technologies for GCTs and connections with pharmaceutical companies' open-innovation programmers.

SOCIETAL Improved quality of life for patients; increased societal acceptance of novel gene-related technologies; establishment of a new type of institutional organization that will support scientific and technological excellence.

Organization

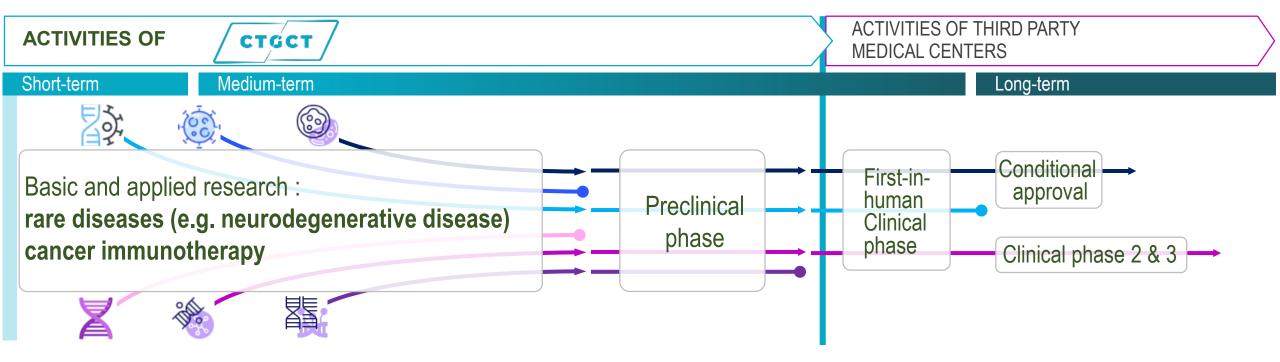
CTGCT CENTRE FOR THE TECHNOLOGIE OF GENE AND CELL THERAPY

The establishment of the CTGCT is coordinated by the National Institute of Chemistry.

CTGCT partners with experience in bringing new technologies to patients: University College London (UCL), Charité University Hospital Berlin, Utrecht University Medical Centre and Dresden University of Technology

Bridging gaps in translation

1400 m² of a new research infrastructure linked to the research environment of the National Institute of Chemistry



Organization

private non-profit research institution with a public interest status

www.ctgct.si

WORKFLOW and PARTNERS CONTRIBUTION

Timeline

2023
 investment documentation
 project documentation

• 2024 construction documentation

• 2025 execution of GOI works technical inspection

• 2026 final activities

The Centre will become fully operational within 5 years.

THE TEAM BEHIND THE PROJECT

NATIONAL INSTITUTE OF CHEMISTRY

PROF DR ROMAN JERALA

National Institute of Chemistry Innovative use of synthetic biology for the programming of molecules and cells for improved efficacy and safety of advanced treatments

PROF DR JERNEJ ULE

National Institute of Chemistry and UK Dementia Research Institute at King's College London Research liaison between Slovenia and Great Britain

PROF DR MOJCA BENČINA

National Institute of Chemistry Ultrasound applications in conjunction with synthetic biology to regulate molecular biological cell processes

DR DUŠKO LAINŠČEK

National Institute of Chemistry Expert in the field of genome modification

BARBARA TIŠLER

National Institute of Chemistry Project office

PROF PETRA REINKE

Berlin Center for Advanced Therapies (BeCAT) Charité Enhance CTGCT's capabilities for refined transfer of research results to the first-in-human clinical practice and further accessibility of the ATMP as a treatment option for patients

PROF GIAMPIETRO SCHIAVO AND PROF PIETRO FRATTA

Queen Square IoN Application of gene therapies to neurologic diseases

STEPHANIE SCHORGE

GeneTxNeuro facility at the UCL School of Pharmacy Viral vector production

PROF QASIM RAFIQ

UCL Department of Biochemical Engineering Production technology development for GCT bioprocessing

PROF EMMA MORRIS

Institute of Immunity & Transplantation, UCL Development of immunotherapies

DR JANE KINGHORN AND DR PAMELA TRANTER

Translational Research Office, UCL

 Utrecht University

PROF JURGEN KUBALL

Department of Hematology, Cancer Center at UMC Utrecht and OncodePACT Therapeutic T-cells and the valorisation of CAR T-cell development

ASSOC PROF ZSOLT SEBESTYEB

OncodePACT

Building a preclinical development infrastructure to de-risk and accelerate the drug development process and leads DARE-NL platform for cancer specific ATMP research

TECHNISCHE PROF EZIO BONIFACIO

RSITAT EN Center for Regenerative Therapies Dresden, TU Dresden SaxoCell association

Expertise, technology and equipment for gene editing and regeneration towards new therapies such as neurodegenerative and haematological diseases

Acknowledgements

OF GENE AND CELL THERAPY

Colleagues at the Institute of Chemistry

Tina Fink Duško Lainšček Tomaž Bizjak Barbara Tišler Ivica Ilić

University Medical Centre

Samo Zver Damijan Osredkar

MIZŠ

Division for Science

REPUBLIKA SLOVENIJA MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT Patient organisations

TO ALL SUPPORTERS OF THE CTGCT

The CTGCT will be an opportunity to recruit motivated colleagues who want to tackle the challenges of bringing biomedical research to patients.

www.ctgct.com info@ctgct.si

CENTRE FOR THE TECHNOLOGIES OF GENE AND CELL THERAPY

The bridge between biomedical research on advanced treatments and its transfer to patients