4. Isomorphism, Matrices and Graph Invariants

Incidence Matrix M(G).

To $\mathrm{G}=(V, E)$ we associate a rectangular incidence matrix $M=M(G)$ with $|V|$ rows and $|E|$ columns:

$$
M_{v, e}=\left\{\begin{array}{lll}
1 & \ldots & v \text { is the endpoint of } e, \\
0 & \ldots & \text { otherwise. }
\end{array}\right.
$$

Handshaking Lemma

Lemma (Handshaking lemma)
In each graph $G=(V, E)$:

$$
2|E(G)|=\sum_{v \in V(G)} \operatorname{val}(v)
$$

The proof uses the so-called bookkeepers rule in the incidence matrix of graph G.

Adjacency matrix

To each graph $G=(V, E)$ with $V=\{1,2,3, \ldots, n\}$ we can associate the adjacency matrix $A=A(G)$ as follows:

$$
A_{i, j}=\left\{\begin{array}{lll}
1 & \ldots & i \sim j \\
0 & \ldots & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
& G=(V, E) \\
& V(G)=\{1,2,3,4\}
\end{aligned}
$$

	1	2	3	4
1	0	1	1	1
2	1	0	0	1
3	1	0	0	1
4	1	1	1	0

Isomorphisms and Graph Invariants

■ An isomorphism $\sigma(G)=H$ is a bijective mapping $\sigma: V(G) \mapsto V(H)$ that preserves adjacency: $u \sim v$ if and only if $\sigma(u) \sim \sigma(v)$.

- A graph invariant is a property (usually a number), that is preserved under an isomorphism. Examples:

■ $|V(G)|$ - number of vertices

- $|E(G)|$ - number of edges
- $\delta(G)$ - minimal valence
- $\Delta(G)$ - maximal valence

Isomorphism - Exercises

N1 Determine an isomorphism between graphs A and B .
N2 Determine an isomorphism between graphs C and D.

Invariants - Example

Graph invariants:

$$
\begin{aligned}
& \text { - }|V(G)|=4 \\
& \text { - }|E(G)|=5 \\
& \text { - } \delta(G)=2 \\
& \text { - } \Delta(G)=3
\end{aligned}
$$

Incidence and adjacency matrices are not graph invariants - we can renumber vertices and edges.

5. Subgraphs and Connectivity in Graphs

Subgraphs

■ Let $\mathrm{G}=(V, E)$ be a simple graph;
■ If $U \subseteq V$ and $F \subseteq E$, then $\mathrm{H}=(U, F)$ is a subgraph (podgraf) of G.

- If $U=V$, then H is a spanning subgraph (vpet podgraf) of G.

■ If two vertices of H are adjacent in H whenever they are adjacent in G, then H is an induced subgraph (induciran podgraf).
■ Note: An induced subgraph is fully determined by the set of vertices. Notation: $\mathrm{H}:=\mathrm{G}[U]$.

Subgraphs - examples

Walks and Paths

- A walk (sprehod) in $\mathrm{G}=(V, E)$ is a sequence

$$
W=\left[v_{0}, v_{1}, \ldots, v_{k}\right]
$$

where $v_{i} \in V$ and $v_{i} \sim v_{i+1}$ for $i=0, \ldots, v_{k}$.

- v_{0} is the beginning of W, v_{k} is the end of W.
- W is a walk from v_{0} to v_{k} (or between v_{0} and v_{k})
- k is called the length of W (denoted by $\ell(W)$).
- Walk W is
- closed (sklenjen) if $v_{0}=v_{k}$,
- path (pot) if v_{i} are all distinct,
- cycle (cikel) if $v_{0}=v_{k}$ and v_{1}, \ldots, v_{k} are distinct.
- A path in G can also be viewed as a subgraph of G isomorphic to P_{n}.
- A cycle in G can also be viewed as a subgraph of G isomorphic to C_{n}.

Walks vs. Paths

Lemma

There is a walk between u and v in G if and only if there is a path between u and v in G.

Proof. Travel along the walk, and whenever you visit a vertex which has been visited before, cut out the part of the walk between the two occurrences of that same vertex.

Connectedness

- For $\mathrm{G}=(V, E)$, define a relation R on V : $u R v \Leftrightarrow$ there is a walk (path) between u and v.
- This relation is an equivalence relation (it is the transitive closure if the adjacency relation).
■ Equivalence classes are connected components (povezane komponente) of G.
■ G is connected (povezan) if it has only one connected component.

Distance in Graphs

■ If G is connected, then $V=V(G)$ becomes a metric space for the following distance function:

$$
\begin{aligned}
d(u, v) & =\min \{\ell(W): W \text { is a walk between } u \text { and } v\} \\
& =\text { the length of the shortest path between } u \text { and } v .
\end{aligned}
$$

- The diameter (premer) of G is

$$
\operatorname{diam}(\mathrm{G})=\max \{d(u, v): u, v \in V(\mathrm{G}) .
$$

Trees

A tree (drevo) is a graph in which for every pair of vertices there exists exactly one path between them.

Lemma

If G is a graph, then the following are equivalent:
1 G is a tree (i.e. G is connected and there is exactly one path between any two vertices).
2 G is connected but removal of any edge disconnects it.
3 G is connected and $|E(\mathrm{G})|=|V(\mathrm{G})|-1$ holds.
4 G contains no cycles and $|E(\mathrm{G})|=|V(\mathrm{G})|-1$ holds.
5 G is connected and contains no cycles.

Trees - the proof of characterization
 I

■ The proof goes by induction on the number of vertices. The theorem clearly holds for graphs on 2 vertices. Suppose that it holds for all graphs on less than $|V(\mathrm{G})|$ vertices.

- (1) $\Rightarrow(2)$: Suppose G is a tree. Then it is connected by definition. Let $e=u v \in E(\mathrm{G})$. By assumption, $[u, v]$ is the only path between u and v. Hence, in $\mathrm{G}-e$ there is no path between u and v.

Trees - the proof of characterization

 II- (2) $\Rightarrow(3)$: Assume that G is connected and removal of any edge disconnects it. We need to show that $|E(\mathrm{G})|=|V(\mathrm{G})|-1$. Choose and edge e. By assumption, $\mathrm{G}-e$ is a union of (two) connected components X and Y. Clearly X and Y are connected graphs with the property that removal of any edge disconnects them. By induction, the implication $(2) \Rightarrow(3)$ holds for them, so

$$
|E(X)|=|V(X)|-1 \text { and }|E(Y)|=|V(Y)|-1 \text {. But then }
$$

$$
|E(G)|=|E(X)|+|E(Y)|+1=
$$

$$
(|V(X)|-1)+(|V(Y)|-1)+1=|V(G)|-1
$$

Trees - the proof of characterization III

- (3) \Rightarrow (4): Suppose G is connected and $|E(\mathrm{G})|=|V(\mathrm{G})|-1$ holds. We need to show that G has no cycles. Suppose on the contrary that C is a cycle. For any $v \notin V(C)$, let e_{v} be the first edge on the shortest path from v to C. Then

$$
|E(\mathrm{G})| \geq|E(C)| \cup\left|\left\{e_{v}: v \in V(\mathrm{G}) \backslash V(C)\right\}\right|=V(\mathrm{G}),
$$

a contradiction.

Trees - the proof of characterization

 IV- (4) \Rightarrow (5): Suppose G contains no cycles and that $|E(\mathrm{G})|=|V(\mathrm{G})|-1$. We need to show that G is connected. Let X_{1}, \ldots, X_{k} be connected components of G . Clearly, each X_{i} is connected and contains no cycles. By induction, this implies that X_{i} is a tree and that $\left|E\left(X_{i}\right)\right|=\left|V\left(X_{i}\right)\right|-1$ holds. On the other hand

$$
|E(\mathrm{G})|=\sum_{i=1}^{k}\left|E\left(X_{i}\right)\right|=\sum_{i=1}^{k}\left|V\left(X_{i}\right)\right|-k .
$$

Since $|E(\mathrm{G})|=|V(\mathrm{G})|-1$, we have $k=1$ and so G is connected.

Trees - the proof of characterization V

- $(5) \Rightarrow(1)$: Suppose that G is connected and has no cycles. We need to show that there is exactly one path between any two points of G . By connectedness, there is at least one path. If there were two, then they would form a cycle. This completes the proof.

Trees

Corollary

A tree contains at least one vertex of valence 1.
Proof. Suppose that G is a graph in which every vertex has valence at least 2. By handshaking lemma,

$$
|E(\mathrm{G})|=\frac{1}{2} \sum_{v \in V(\mathrm{G})} \operatorname{val}(v) \geq \frac{1}{2}|V(\mathrm{G})| \cdot 2=|V(\mathrm{G})| .
$$

On the other hand, if G is a tree, then

$$
|E(\mathrm{G})|=|V(\mathrm{G})|-1<|V(\mathrm{G})| .
$$

Hence G is not a tree.

A vertex of valence 1 is called a leaf (list).

Spanning trees

A spanning subgraph which is a tree is called a spanning tree (vpeto drevo).

Lemma

A graph G is connected if and only if contains a spanning tree.
Proof. The right-to-left direction is obvious. If G is connected and is not a tree, there exists a cycle C in it and we can remove an edge $e \in E(C)$ while preserving connectivity. Repeating this we get a subgraph of G - a spanning tree.

Number of spanning trees

- A connected graph may have more than one spanning tree.
- Cayley formula: $\tau\left(K_{n}\right)=n^{n-2}$.

■ $\mathrm{G}-e$... edge removal: a graph obtained from G by removing the edge $e \in E(G)$ (but keeping in its end vertices)

- G/e ... edge contraction: remove e and merge the two endvertices of $e \in E(G)$.
■ In general: a recursive formula

$$
\tau(\mathrm{G})=\tau(\mathrm{G}-e)+\tau(G / e) .
$$

Laplacian matrix

- Laplacian matrix for a graph G is $L(\mathrm{G})=D(\mathrm{G})-A(\mathrm{G})$, where $D(\mathrm{G})$ denotes the diagonal matrix with entries $D_{i, i}=\operatorname{val}\left(v_{i}\right)$ and $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
- Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the non-zero eigenvalues of the Laplace matrix $L(\mathrm{G})$. Then

$$
\tau(\mathrm{G})=\frac{1}{n} \lambda_{1} \lambda_{2} \cdots \lambda_{n-1} .
$$

■ We get the same result if we calculate any cofactor of $L(G)$.

Example

$$
L(G)=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & 0 & -1 \\
-1 & 0 & 2 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]
$$

Any cofactor equals 8.

Spanning Paths and Cycles

- A spanning subgraph is also called a factor.
- A spanning path in a graph is also called a hamilton path.
- A spanning cycle in a graph is also called a hamilton cycle.

Isometric Subgraph

- $H=(U, F)$ is an isometric subgraph of graph $G=(V, E)$, if the distances are preserved:
- For each $u, v 2$ U: $d_{H}(u, v)=d_{G}(u, v)$.

Interval $I_{G}(u, v)$

- Let $u, v 2 V(G)$ belong to the same connected component of G. By $I_{G}(u, v)$ we denote the interval with endpoints u and v.
- $I_{G}(u, v)$ is the graph, induced on the set of vertices belonging to some shortest path from u to v.
- If there is no danger of confusion we can simplify notation: $I(u, v)$.

Convex Subgraph

- Graph H is a convex subgraph of G, if for every pair of vertices u and v from $V(H)$ that belong to the same connected component of G, the interval $I_{G}(u, v)$ is a subgraph of H.

k-connectedness

- Graph G with $|V(G)|>k$ is \mathbf{k}-connected, if the removal of any set S with $|S|<k$ leaves a connected graph.
- Connectivity $\kappa(G)$ of graph G is the largest k, such that G is still k-connected.
- Vertex v of graph G is a cut-vertex, if $G-v$ contains more connected components than G.
- A connected graph with no cut-vertex is called a block.

2-connectedness

- Theorem: The following claims are equivalent:
- Graph G is 2-connected,
- Graph G is a block,
- Any pair of vertices belongs to a common cycle

Menger’s Theorem

- Two paths in a graph with a common pair of end-vertices are internally disjoint, if they have no other vertex in common.
- Theorem: Graph is k-connected, if and only if there are k pair-wise internally disjoint paths between any two of its vertices.

Exercises

- N1. Show that if G has a hamilton cycle it also contains a hamilton path.
- N2. Show that every graph that has a hamilton path is connected.
- N3. Construct a graph on 10 vertices that has no hamilton path.
- N4. Construct a graph on 10 vertices that has no hamiloton cycle but has a hamilton path.
- N5: Construct a graph on 10 vertices that has a hamilton cycle.

Exercises 6-2

- N6. Determine all graphs with diameter 1.
- N7. Prove that each convex subgraph is an isometric subgraph.
- N8. Prove that each isometric subgraph is an induced subgraph.
- N9. Prove that each connected component is a convex subgraph.
- N10. Prove that the intersection of two induced subgraphs is an induced subgraph.
- N11. Prove that the intersection of two convex subgraphs is a convex subgraph.

Homework

- H1. Let C be the shortest cycle in graph G. Show that C is an induced subgraph of G .
- H2. Determine all non-isomorphic intervals in Q_{4}.
- H3. Find an isometric subgraph of Q_{3} that is not convex.

