7. Basic Operations on Graphs

Basic Operations on Graphs

- Deletion of edges
- Deletion of vertices
- Addition of edges
- Union
- Complement
- Join

Deletion of Edges

- If $G=(V, E)$ is a graph and e 2 E one of tis edges, then $\mathrm{G}-\mathrm{e}:=(\mathrm{V}, \mathrm{E}-\{\mathrm{e}\})$ is a subgraph of G. In such a case we say that G-e is obtained from G by deletion of edge e.

Deletion of Vertices

- Let x $2 \mathrm{~V}(\mathrm{G})$ be a vertex of graph G, then $G-x$ is the subgraph obtained from G by removal of x grom $V(G)$ and removal of all edges from $E(G)$ having x as an endpoint. $G-x$ is obtained from G by deletion of vertex x.

Edge Addition

- Let G be a graph and (u,v) a pair of nonadjacent vertices. Let $\mathrm{e}=\mathrm{uv}$ denot the new edge between u and v. By G' $=G+u v=G$ +e we denote the graph obtained from G by addition of edge e. In other words:
- $V\left(G^{\prime}\right):=V(G)$,
- $\mathrm{E}\left(\mathrm{G}^{\prime}\right):=\mathrm{E}(\mathrm{G})[\{\mathrm{e}\}$.

Graph Union Revisited

- If G and H are graphs we denote by Gt H their disjoint union.
- Instead of G t G we write 2G.
- Generalization to nG , for an arbitrary positive integer n :
- 0G := ;.
- $(\mathrm{n}+1) \mathrm{G}:=\mathrm{nG} \mathrm{t} \mathrm{G}$
- Example:
- Top row : $\mathrm{C}_{6} \mathrm{t}_{9}$
- Bottom row: $2 \mathrm{~K}_{3}$.

Graph Complement

- The graph complement G^{c} of a simple graph G has $V\left(G^{c}\right):=V(G)$, but two vertices u and v are adjacent in G^{c} if and only if they are not adjacent in G.
- For instance $\mathrm{C}_{4}{ }^{\mathrm{c}}$ is isomorphic to $2 \mathrm{~K}_{2}$.

Graph Difference

Bipartite Complement

- For a bipartite graph X (with a given biparitition) one can define a bipartite complement X^{b}. This is the graph difference of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ and X : $\mathrm{X}^{\mathrm{b}}=$ $K_{m, n} \backslash X$.

Empty Graph Revisited.

- The word "empty graph" is used in two meanings.
- First Meaning: ;. No vertices, no edges.
- Second Meaning: $\mathrm{E}_{\mathrm{n}}:=\mathrm{K}_{\mathrm{n}}{ }^{\mathrm{c}}$. $=\mathrm{nK}_{1}$. There are n vertices, no edges.
- $\mathrm{E}_{0}=;=0$. G will be called the void graph or zero graph.

Graph Join

- Join of graphs G and H is denoted by G*H and defined as follows:
- $G^{*} H:=\left(G^{c} t H^{c}\right)^{c}$
- In particular, this means that $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is a join of two empty graphs E_{n} and E_{m}.

Exercises 7

- N1. Show that for any set $F \mu \mathrm{E}(\mathrm{G})$ the graph G-F is well-defined.
- $\mathbf{N} 2$. Show that for any set $X \mu \mathrm{~V}(\mathrm{G})$ the graph GX is well-defined.
- N3. Show that for any set $X \mu \mathrm{~V}(\mathrm{G})$ and any set $\mathrm{F} \mu \mathrm{E}(\mathrm{G})$ the graph $\mathrm{G}-\mathrm{X}-\mathrm{F}$ is well-defined.
- N4. Prove that H is a subgraph of G if and only if H is obtained from G by a succession of vertex and edge deletion.

8. Advanced Operations on Graphs

Cone and Suspension

- The join of G and K_{1} is called the cone over G and is denoted by Cone(G$)=\mathrm{G}^{*} \mathrm{~K}_{1}$.
- The join $G^{*}\left(2 \mathrm{~K}_{1}\right)$ is called suspension.

Examples

- Any complete multipartite graph is a join of empty graphs.
- The cone Cone $\left(\mathrm{C}_{\mathrm{n}}\right)$ is called a pyramid or wheel W_{n}.
- The octahedral graph is the suspension over C_{4}. It can be written in the form:
$-\mathrm{O}_{3}=\left(2 \mathrm{~K}_{1}\right) *\left(2 \mathrm{~K}_{1}\right) *\left(2 \mathrm{~K}_{1}\right)$.
- Construction can be generalized to:
$-\mathrm{O}_{\mathrm{n}}=\left(2 \mathrm{~K}_{1}\right)^{*}\left(2 \mathrm{~K}_{1}\right)^{*} \ldots{ }^{*}\left(2 \mathrm{~K}_{1}\right)$

Subdivision

- Let e $2 \mathrm{E}(\mathrm{G})$ be an edge of G . Let $\mathrm{S}(\mathrm{G}, \mathrm{e})$ denote the graph obtained from G by replacing the edge e by a path of length 2 passing through a new vertex. Such an operation is called subdivision of the edge e..
- Let F be a subset of $E(G)$, then $S(G, F)$ denotes the graph obtained from the subdivision of each edge of F. In the case $\mathrm{F}=\mathrm{E}$, we drop the second argument and $\mathrm{S}(\mathrm{G})$ denotes the subdivision graph of G.
- Graph H is a general subdivision of graph G, if H is obtained from G by a sequence of edge subdivisions.

Graph Homeomorphism

- Graphs G and H are homeomorphic, if they have a common subdivision.
- Graph G is topologically contained in a graph K , if there exists a subgraph H of K , that is homeomorphic to G .

Matching

- Edges with no common endvertex are called independent. A set of pairwise independent edges is called a matching.

Maximal Matching

- A matching that cannot be augmented by adding new edges is called a maximal matching.

Perfect Matching

- Proposition: Let M be a matching of a graph G on n vertices. Then $|\mathrm{M}| \cdot \mathrm{n} / 2$.
- A matching M with $|M|=n / 2$ is called a perfect matching.

Abstract Simplicial Complex

- $K \mu P(S)$ is an abstract simplicial complex if for each σ 2 K and each $\tau \mu \sigma$ it follows that $\tau 2 \mathrm{~K}$.
- On the left:
- $K=\{$; a, b, c, d, e, f, g, h, ab, ad, abd, bc, be, bce, bd, ce, df, dg, de, eh\}

Line Graph L(G)

- Two edges with a common end-vertex are incident. Incidence is a binary relation on the edge set $\mathrm{E}(\mathrm{G})$.
- Line graph $L(G)$ has the vertex set $E(G)$, while the edges of $L(G)$ are determined by the incidence of edges in G.

Examples

- The top row depicts the Heawood graph and its fourvalent linegraph.
- The bottom row depicts the Petersen graph and its line graph.

