Predicting Bus Arrival Time Based on Positional Data

Ljubljana, 9 October 2023

Matic Kladnik, Luka Bradeško, Dunja Mladenić

Outline

- Problem setting and data
- Description of proposed approach
- Overview of the architecture of the proposed system
- Machine learning models
- Evaluation application

Problem Setting

- Goal: predict arrival times of city buses to stations
- Live system: predictions are available at any time via the API
- Large city in EU with more than 800 buses

Data

- Latest bus position coordinates
- Details of routes: sequence of stations for each route
- Details of stations: positions, names
- Suboptimal level of detail: we do not know the exact departure time from the station -> we detect vicinity of a bus to a station

Proposed Approach Description

- Use recent historic data to estimate traffic flows
- Recent travel times on the same route

- Recent travel times on routes that share the path

Proposed Approach Description

- Positional semantic context: relative position of the bus to the latest station

Architecture of the Proposed System

Architecture of the Proposed System

- Data fetching from the Public Server API several times per minute
- Most recent predictions about arrival times are stored in the data manager
- Latest predictions for specific stations, buses, or routes are returned immediately upon request through the proposed system's API

Machine Learning Models

- Linear regression
- SVM (SVR) using RBF kernel
- Neural network
- Multi-layer perceptron: 2 hidden layers $(15,8)$
- L-BFGS for optimizing weights

Evaluation application

- Completed predictions (have detected arrival to target station) are stored in the DB
- Evaluation data is queried from the DB and sent to the web application upon request from the proposed system's API
- Web application transforms data and shows visualizations

Evaluation Application

Arrival Predictions Evaluation Query Form

	Select Evaluation Type		
	ORoute	-Route Segment	- Station
Choose a starting date		Choose an end	
\square Monday, 5 July 2021			Monda
Route Number:	728		
Route Direction:	ASC		
Departure Station ID:	Enter Departure Station ID		
Arrival Station ID:	Enter Arrival Station ID		
Bus Number:	Enter Bus Number		

Evaluation Application

Distribution of absolute prediction misses in seconds

- Prediction errors are merged into bins of 30 s

Evaluation Application

- Best bins:
- -30+
- 0+
- Negative bins represent predictions that undershoot

Distribution of prediction misses in seconds

Evaluation Application

- Based on opinions of domain experts
- Blue bin is the best

Evaluation Application

- The system provides computed metrics of performances:
- MAE
- RMSE
- The proposed system performs better across various evaluation approaches
- Different evaluation approaches give us a more complete evaluation and comparison between various prediction systems

Conclusion

- Recent historic context of buses from the same and compatible routes
- Relative position to station as semantic context
- Architecture of the proposed live prediction system
- Evaluation of performance between systems with a web application
- Future work
- Additional machine learning algorithms (random forest, XGBoost, other NN)
- Improving the evaluation application to support showing relative share of distributions in bins instead of absolute numbers
- More performance metrics, e.g. MAPE

