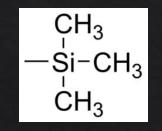

Structure Based Molecular Fingerprint Prediction through Spec2Vec Embedding of GC-EI-MS Spectra

Aleksander Piciga, Milka Ljoncheva, Tina Kosjek, Sašo Džeroski @ IJS



Terminology

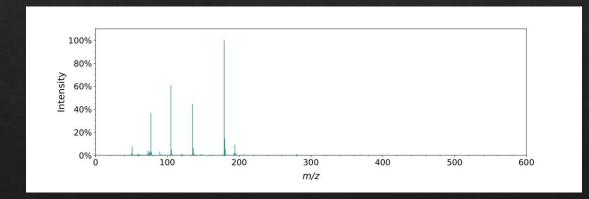
Molecular Fingerprint (MACCS – 166 patterns)

♦ TMS - Trimethysilyl

\$ SMARTS

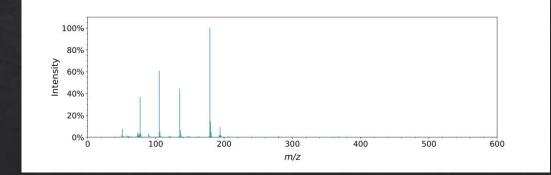
 [R]1@*@*@1 = 3 ring
 \$ InChI Key
 InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3
 \$ SMILES

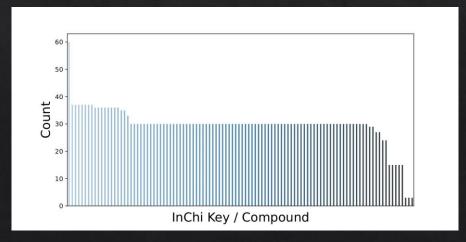
OCC


 Gas chromatography (GC) mass spectrometry (MS) obtained by electron impact ionization (EI)

Structure

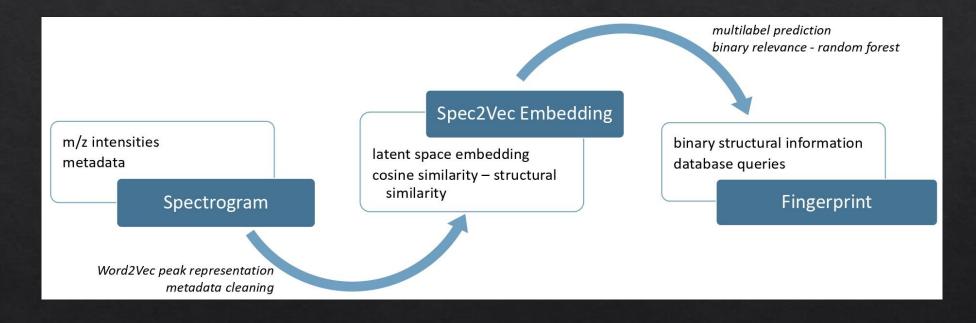
Spectrum peaks are significant for structure classification Correlate to structural information


Important for:


- Identification of Compounds
- Environmental Analysis
- ♦ Forensic Science
- Database Querying
- ♦ Molecular Properties

Dataset

- ♦ Mass Spectra
- ✤ TMS Molecules
- ♦ Publicly available
- ♦ 3144 distinct spectra
- ♦ 106 unique compounds



Spec2Vec

- ♦ Inspired by Word2Vec
- ♦ Peaks = "Words"
- ♦ Learns relationships among spectrum peaks
- ♦ Easy and inexpensive to train
- ♦ 300 dimensional embedding with locally trained model
- ♦ Embeddings do not directly reveal structure

Pipeline

Preprocessing

Metadata enrichment and correction

- ✤ InChI Key
- ♦ Molecule names
- SMILES definitions
- ♦ placeholders

Spectrum standardization

- Normalization
- Constrained number of peaks
- Remove spectra with too little significant peaks

Spec2Vec Embdedings

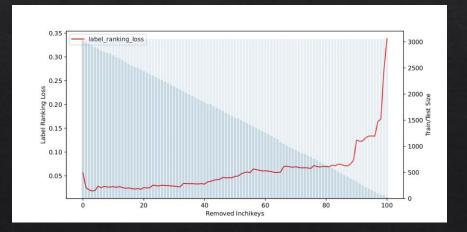
- ♦ Train local model on the data
- ♦ Embed the data
- ♦ Latent Space embeddings (300 dimensional)
 - ♦ cosine similarity ~ structural similarity

Multilabel classification (MLC)

- ♦ 300 attributes (Spec2Vec embedding)
- ♦ 106 targets (MACCS fingerprint) ~ structure
- Binary Relevance (n binary classifiers) / Power Set (2ⁿ classes)
- ♦ Random Forest (with OVR)

Evaluations and Baseline

♦ Baseline


- ♦ Default Classifier
- ♦ Similarity Voting
- ♦ Evaluation
 - ♦ Tracked many metrics
 - ♦ Hamming loss, label ranking loss, weighted F1 score, coverage error
 - ♦ Prediction of unknown/unseen molecules (!)

Results

2 times repeated 5-fold on all data (compounds in test set can also appear in train set)

	Default Classifier	Similarity Voting	Random Forest
Hamming Loss	0.083	0.038	0.043
Weighted F1 Score	0.635	0.642	0.854
Label Ranking Loss	0.630	0.083	0.010
Coverage Error	166.000	64.794	42.964

10-fold by removing 10% of compounds (evaluation on unseen compounds)

	Similarity Voting	Random Forest
Hamming Loss	0.047	0.070
Weighted F1 Score	0.639	0.752
Label Ranking Loss	0.084	0.43
Coverage Error	75.153	81.966

Future Work

- Evaluating the approach on larger public databases
- Prediction of other fingerprints
- Prediction of arbitrary SMARTS patterns
- Sevaluation of other (more complex) ML techniques
- Comparison of publicly available Spec2Vec models trained on larger datasets

Conclusion

- ♦ Importance of molecular structure
- Molecular Fingerprints ~ Molecular Structure
- Spec2Vec embeddings for better structural correlation
- ML approach for predicting molecular fingerprints

Structure Based Molecular Fingerprint Prediction through Spec2Vec Embedding of GC-EI-MS Spectra

https://github.com/al-pi314/mass_spectra/tree/article

Aleksander Piciga, Milka Ljoncheva, Tina Kosjek, Sašo Džeroski @ IJS

