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The Data Modelling Problem

y= f(x) z=y+e
multivariate & non-linear

* measurement errors
{x,z}1i=1:.N z=f(x)+e
infer behaviour everywhere from a few examples
* little or no prior information on f(x)

y etc. indicates estimate
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Dimensionality

lose ability to see the shape of f(x)

e tryitin13-D

number of samples exponential in d
« if N OK in 1-D, N9 needed in d-D

how do we know if “well-spaced™?

* how can we sample where the action is?
* observational vs experimental data!

ALWAYS undersampled!
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What goes on in the Gaps?

Universal Approximation

Advantage
* can bend to (almost) any shape

Disadvantage
* can bend to (almost) any shape

Training data is all we have to go on
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Overfitting (sample data)

Zero error?
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Underfitting (sample data)
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Restricting “Flexibility”

 use data to tell the estimator how to behave

* regularization/penalization

» penalize “roughness”
« e.9. SSE + pQ
+ Q=32IwZ— W=(OTD+pl)! @7z
* use potentially complex structure

 data constrains where it can
e Q constrains elsewhere

EPSRC Winter School January 2008




X" Hold-out Method

Training RMSE 0.23
Testing RMSE 0.38

-0.5;

keep back P% for testing
wasteful

sample dependent
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Cross Validation

« |eave-one-out CV
« train on all but one
« test that one
* repeat N times
« compute performance

« m-fold CV

« divide sample into m non-overlapping sets
e proceed as above

« all data used for training and testing
* more work but realistic performance estimates

« used to choose “hyper-parameters”
e e.g. p, number, width ...
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Adaptive Basis Functions

* “linear” models
fixed pre-processing
parameters — cost “benign”
easy to optimize
but
combinatorial
arbitrary choices
what is best pre-processor to choose?
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The Multi-Layer Perceptron

formulated from loose biological principles

popularized mid 1980s

 Rumelhart, Hinton & Williams 1986
Werbos 1974, Ho 1964

“learn” pre-processing stage from data

layered, feed-forward structure
» sigmoidal pre-processing
 task-specific output

non-linear model
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Combinations of Sigmoids
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Universal Approximation

* linear combination of “enough” sigmoids
* Cybenko, 1990

* single hidden layer adequate
* more may be better

* choose hidden parameters (w, b) optimally
problem solved?
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Interpretation

* Minimising SSE equivalent to finding
conditional mean of target data

* infinite sample / global minimlum

5
2
5
2
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e compactness
 potential to obtain same veracity with much

smaller model

* c.f. sparsity/complexity control in linear
models

* “simple” training algorithm
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Compactness of Model
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Backpropagation Algorithm

Gradient Descent
w (t+1)=w, (t)+n(t)d;(t)y,(t) jeL,.rel,, UpdateRule

Generalised Delta Rule

. ):H’(netj (t))ej(t) m=M output layer
( (t )Z W, (t)6; (t) je L, me hidden layers

leL,
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* parameter — cost "malign”
optimization difficult
many solutions possible

effect of hidden weights in
output non-linear
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Rolling Ball

unique
minimum
od/ ow =0

weight, w
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dw/dt o« -9J/ ow
W «— W -n aJ/ ow

unique
minimum
od/ ow =0

weight, w
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dJ/ow =0

local
minimum
od/ ow =0

global
minimum
od/ ow =0

weight, w
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Multi-Modal Cost Surface

M

gradient?

d

global min
local min
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Heading Downhill

dassume
« minimization (e.g. SSE)
 analytically intractable
step parameters downhill

W, v = Wyq T Step in right direction

11T VYV (V] ]

backpropagation (of error)
 slow but efficient

conjugate gradients, Levenburg/Marquardt
 for preference
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Implications

correct structure can get “wrong” answer
* dependency on initial conditions
* might be good enough

train / test (cross-validation) required

* |s poor behaviour due to

network structure?
|Cs?

additional dimension in development
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RBF NN Warning!

« RBF NNs claimed to have unique solution
BUT

anAd wi
CAI INA VV I

« some other method

* L.I.P. models have “non-linear parameters” to
select — multi-modal cost = MLP
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Are multiple minima a problem?

e pros seem to outweigh cons
* good solutions often arrived at quickly

« all previous issues apply
« sample density & distribution
* lack of prior knowledge
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How to Use

* to “generalize” a GLM

* linear regression — curve-fitting
linear output + SSE

* logistic regression — classification
logistic output + cross-entropy (deviance)
extend to multinomial, ordinal

e.g. softmax outptut + cross entropy

* Poisson regression — count data
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What is Learned?

* the right thing

 In a maximum likelihood sense

theoretical

 conditional mean of target data, E(z|x)

 implies probability of class membership for
classification P(C.|x)

estimated
* If good estimate then y — E(z|x)
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Simple 1-D Function
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More Complex 1-D Example

L~V
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Local Solutions

~J VY
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data courtesy B Ripley
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Linear Decision Boundary
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induced by P(C4|x) = P(C,|x)
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