

Non-linear Modelling by Adaptive Pre-processing

Rob Harrison Automatic Control & Systems Engineering

The Data Modelling Problem

- y= f(x) z=y+e
- multivariate & non-linear
 - measurement errors
- $\{x_i, z_i\} i = 1:N$ $z_i = f(x_i) + e_i$
- infer behaviour everywhere from a few examples
 - little or no prior information on f(x)
- ŷ etc. indicates estimate

Dimensionality

- lose ability to see the shape of f(x)
 - try it in 13-D
- number of samples exponential in d
 - if N OK in 1-D, N^d needed in d-D
- how do we know if "well-spaced"?
 - how can we sample where the action is?
 - observational vs experimental data!
- ALWAYS undersampled!

What goes on in the Gaps?

- Universal Approximation
- Advantage
 - can bend to (almost) any shape
- Disadvantage
 - can bend to (almost) any shape
- Training data is all we have to go on

Underfitting (sample data)

EPSRC Winter School January 2008

Restricting "Flexibility"

- use data to tell the estimator how to behave
- regularization/penalization
 - penalize "roughness"
 - e.g. SSE + ρQ
 - $\mathbf{Q} = \Sigma \mathbf{w}^2_{ij} \rightarrow \hat{\mathbf{w}} = (\Phi^T \Phi + \rho \mathbf{I})^{-1} \Phi^T \mathbf{z}$
- use potentially complex structure
 - data constrains where it can
 - Q constrains elsewhere

Hold-out Method

Cross Validation

- leave-one-out CV
 - train on all but one
 - test that one
 - repeat N times
 - compute performance
- m-fold CV
 - · divide sample into m non-overlapping sets
 - proceed as above
- all data used for training and testing
 - more work but realistic performance estimates
- used to choose "hyper-parameters"
 - e.g. p, number, width ...

Adaptive Basis Functions

- "linear" models
 - fixed pre-processing
 - parameters → cost "benign"
 - easy to optimize but
 - combinatorial
 - arbitrary choices
 - what is best pre-processor to choose?

The Multi-Layer Perceptron

- formulated from loose biological principles
- popularized mid 1980s
 - Rumelhart, Hinton & Williams 1986 Werbos 1974, Ho 1964
- "learn" pre-processing stage from data
- layered, feed-forward structure
 - sigmoidal pre-processing
 - task-specific output

non-linear model

A Sigmoidal Unit

Combinations of Sigmoids

EPSRC Winter School January 2008

Universal Approximation

- linear combination of "enough" sigmoids
 - Cybenko, 1990
- single hidden layer adequate
 - more may be better
- choose hidden parameters (w, b) optimally problem solved?

Interpretation

- Minimising SSE equivalent to finding conditional mean of target data
 - infinite sample / global minimum_

Pros

- compactness
 - potential to obtain same veracity with much smaller model
 - c.f. sparsity/complexity control in linear models
- "simple" training algorithm

Compactness of Model

MLP O (1/H)SER O $(1/H^{\frac{2}{d}})$

Backpropagation Algorithm **Gradient Descent** $w_{ir}(t+1) = w_{ir}(t) + \eta(t)\delta_{i}(t)y_{r}(t) \quad j \in L_{m}, r \in L_{m-1}$ Update Rule **Generalised Delta Rule** $\delta_i(t) = \theta'(net_i(t))e_i(t) \quad m = M$ output layer $\delta_{j}(t) = \sigma'(net_{j}(t)) \sum_{i \in L_{m}} w_{ij}(t) \delta_{i}(t) \quad j \in L_{m-1}, m \in \text{hidden layers}$

& Cons

- parameter → cost "malign"
 - optimization difficult
 - many solutions possible
 - effect of hidden weights in output non-linear

cost, J

Gradient Descent

 $\frac{dw}{dt} \propto -\partial J / \frac{\partial w}{\partial w}$ $w \leftarrow w - \eta \frac{\partial J}{\partial w}$

EPSRC Winter School January 2008

Multi-Modal Cost Surface

Heading Downhill

- assume
 - minimization (e.g. SSE)
 - analytically intractable
- step parameters downhill
- w_{new} = w_{old} + step in right direction
- backpropagation (of error)
 - slow but efficient
- conjugate gradients, Levenburg/Marquardt
 - for preference

backprop

conjugate gradients

Implications

- correct structure can get "wrong" answer
 - dependency on initial conditions
 - might be good enough
- train / test (cross-validation) required
 - is poor behaviour due to network structure? ICs?
 - additional dimension in development

RBF NN Warning!

- RBF NNs claimed to have unique solution BUT
- who picks the pre-processing layer?
 - direct optimisation of centres and widths
 - some other method
- L.I.P. models have "non-linear parameters" to select → multi-modal cost = MLP

Are multiple minima a problem?

- pros seem to outweigh cons
- good solutions often arrived at quickly
- all previous issues apply
 - sample density & distribution
 - lack of prior knowledge

How to Use

- to "generalize" a GLM
 - linear regression curve-fitting linear output + SSE
 - logistic regression classification
 logistic output + cross-entropy (deviance)
 extend to multinomial, ordinal

e.g. softmax outptut + cross entropy

Poisson regression – count data

What is Learned?

- the right thing
 - in a maximum likelihood sense

theoretical

- conditional mean of target data, E(z|x)
 - implies probability of class membership for classification P(C_i|x)

estimated

• if good estimate then $y \rightarrow E(z|x)$

Simple 1-D Function

More Complex 1-D Example

Local Solutions

A Dichotomy

data courtesy B Ripley

EPSRC Winter School January 2008

Linear Decision Boundary

induced by $P(C_1|x) = P(C_2|x)$

Non-Linear Decision Boundary

Over-fitted Decision Boundary

