Non-linear Modelling by Adaptive Pre-processing

Rob Harrison
Automatic Control \& Systems Engineering

The Data Modelling Problem

- $y=f(x) \quad z=y+e$
- multivariate \& non-linear
- measurement errors
- $\left\{x_{i}, z_{i}\right\} i=1: N \quad z_{i}=f\left(x_{i}\right)+e_{i}$
- infer behaviour everywhere from a few examples
- little or no prior information on $f(x)$
- ŷ etc. indicates estimate

1.5

```
\[
1
\]
\[
>0.5
\]
\[
0
\]
\(\square\)
```


1.4

```
\[
1.2
\]
\[
1
\]
\[
0.8
\]
\[
0.6
\]
\[
\lambda
\]
\[
0.4
\]
\[
0.2
\]
\[
0
\]
\[
-0.2
\]
\[
\begin{array}{cccccc}
-0.4 & 0.2 & 0.4 & & 0.6 & 0.8 \\
\begin{array}{c}
0 \\
\text { EPSRC Winter School January 2008 }
\end{array} & & \mathrm{x} & & 1
\end{array}
\]
```


1.5

>0.5

0

Dimensionality

- lose ability to see the shape of $f(x)$
- try it in 13-D
- number of samples exponential in d
- if N OK in 1-D, N^{d} needed in d-D
- how do we know if "well-spaced"?
- how can we sample where the action is?
- observational vs experimental data!
- ALWAYS undersampled!

What goes on in the Gaps?

- Universal Approximation
- Advantage
- can bend to (almost) any shape
- Disadvantage
- can bend to (almost) any shape
- Training data is all we have to go on

Overfitting (sample data)

Underfitting (sample data)

Goldilocks

Restricting "Flexibility"

- use data to tell the estimator how to behave
- regularization/penalization
- penalize "roughness"
- e.g. SSE $+\rho$ Q
- $\mathrm{Q}=\Sigma \mathrm{w}^{2} \mathrm{ij} \rightarrow \hat{\mathrm{w}}=\left(\Phi^{\top} \Phi+\rho \mathrm{l}\right)^{-1} \Phi^{\top} \mathrm{z}$
- use potentially complex structure
- data constrains where it can
- Q constrains elsewhere

Hold-out Method

Cross Validation

- leave-one-out CV
- train on all but one
- test that one
- repeat N times
- compute performance
- m-fold CV
- divide sample into m non-overlapping sets
- proceed as above
- all data used for training and testing
- more work but realistic performance estimates
- used to choose "hyper-parameters"
- e.g. ρ, number, width ...

Training Data | Training Data | |
| :---: | :---: |
| x_{1} | z_{1} |
| x_{2} | z_{2} |
| x_{3} | z_{3} |
| x_{4} | z_{4} |
| x_{5} | z_{5} | Y_{4}

x_{1}	z_{1}
x_{2}	z_{2}
x_{3}	z_{3}
x_{4}	z_{4}
x_{5}	z_{5}

$$
\begin{array}{|c|}
\hline Y_{1} \\
\hline \hline Y_{2} \\
\hline \hline Y_{3} \\
\hline \hline Y_{4}
\end{array}
$$

Adaptive Basis Functions

- "linear" models
- fixed pre-processing
- parameters \rightarrow cost "benign"
- easy to optimize but
- combinatorial
- arbitrary choices
what is best pre-processor to choose?

The Multi-Layer Perceptron

- formulated from loose biological principles
- popularized mid 1980s
- Rumelhart, Hinton \& Williams 1986

Werbos 1974, Ho 1964

- "learn" pre-processing stage from data
- layered, feed-forward structure
- sigmoidal pre-processing
- task-specific output
non-linear model

Two-Layer MLP

$$
\begin{aligned}
& y=\theta\left(\underline{w}^{T} \underline{Y}+b\right) \\
& v_{1}=\sigma\left(\underline{y}_{1}^{2} \underline{x}+b_{1}\right) \\
& y=\sigma\left(\sum w_{0}\left(\sum_{,}, w_{x}+b, b\right)+b\right)
\end{aligned}
$$

A Sigmoidal Unit

Combinations of Sigmoids

Universal Approximation

- linear combination of "enough" sigmoids
- Cybenko, 1990
- single hidden layer adequate
- more may be better
- choose hidden parameters (w, b) optimally problem solved?

Interpretation

- Minimising SSE equivalent to finding conditional mean of target data
- infinite sample / global minimum

$$
\begin{aligned}
& J_{\infty}= \frac{1}{2} \sum_{i=1}^{n} \int_{\underline{x} \in \square^{d}}\left(E\left[z_{i} \mid \underline{x}\right]-\hat{f_{i}}(\underline{x} ; \mathscr{O})\right)^{2} p(\underline{x}) d \underline{x} \\
&+\frac{1}{2} \sum_{i=1}^{n} \int_{\underline{x} \in \square^{d}}\left(z_{i}-E\left[z_{i} \mid \underline{x}\right]\right)^{2} p(\underline{x}) d \underline{x} \\
& \text { does not depend } \\
&\left.\quad \text { on } \hat{f}^{(}(\underline{x} ; O)^{*}\right) \square E\left[z_{i} \mid \underline{x}\right]
\end{aligned}
$$

Pros

- compactness
- potential to obtain same veracity with much smaller model
- c.f. sparsity/complexity control in linear models
- "simple" training algorithm

Compactness of Model

MLP O (1/H)
$\operatorname{SER} \mathrm{O}\left(1 / H^{2 / d}\right)$

Backpropagation Algorithm

Gradient Descent
$w_{\mathrm{jr}}(t+1)=w_{\mathrm{jr}}(t)+\eta(t) \delta_{j}(t) y_{r}(t) j \in L_{m}, r \in L_{m-1}$
Update Rule
Generalised Delta Rule

$$
\begin{aligned}
& \delta_{j}(t)=\theta^{\prime}\left(\operatorname{net}_{j}(t)\right) e_{j}(t) m=M \quad \text { output layer } \\
& \delta_{j}(t)=\sigma^{\prime}\left(\text { net }_{j}(t)\right) \sum_{i \in L_{m}} w_{i j}(t) \delta_{i}(t) j \in L_{m-1}, m \in \text { hidden layers }
\end{aligned}
$$

\& Cons

- parameter \rightarrow cost "malign"
- optimization difficult
- many solutions possible
- effect of hidden weights in output non-linear

Rolling Ball

Gradient Descent

Multi-Modal Cost Surface

Heading Downhill

- assume
- minimization (e.g. SSE)
- analytically intractable
- step parameters downhill
- $\mathrm{w}_{\text {new }}=\mathrm{w}_{\text {old }}+$ step in right direction
- backpropagation (of error)
- slow but efficient
- conjugate gradients, Levenburg/Marquardt
- for preference

Implications

- correct structure can get "wrong" answer
- dependency on initial conditions
- might be good enough
- train / test (cross-validation) required
- is poor behaviour due to network structure? ICs?
additional dimension in development

RBF NN Warning!

- RBF NNs claimed to have unique solution BUT
- who picks the pre-processing layer?
- direct optimisation of centres and widths
- some other method
- L.I.P. models have "non-linear parameters" to select \rightarrow multi-modal cost \equiv MLP

Are multiple minima a problem?

- pros seem to outweigh cons
- good solutions often arrived at quickly
- all previous issues apply
- sample density \& distribution
- lack of prior knowledge

How to Use

- to "generalize" a GLM
- linear regression - curve-fitting linear output + SSE
- logistic regression - classification logistic output + cross-entropy (deviance) extend to multinomial, ordinal
e.g. softmax outptut + cross entropy
- Poisson regression - count data

What is Learned?

- the right thing
- in a maximum likelihood sense theoretical
- conditional mean of target data, E(z|x)
- implies probability of class membership for classification $\mathrm{P}\left(\mathrm{C}_{\mathrm{i}} \mid \mathrm{x}\right)$ estimated
- if good estimate then $\mathrm{y} \rightarrow \mathrm{E}(\mathrm{z} \mid \mathrm{x})$

Simple 1-D Function

More Complex 1-D Example

Local Solutions

A Dichotomy

Linear Decision Boundary

induced by $P\left(C_{1} \mid x\right)=P\left(C_{2} \mid x\right)$

Non-Linear Decision Boundary

Over-fitted Decision Boundary

