
N li M d lli bNon-linear Modelling by 
Adaptive Pre processingAdaptive Pre-processing

Rob Harrison
Automatic Control & Systems Engineering



The Data Modelling ProblemThe Data Modelling Problem
y f(x) z y+e• y=  f(x)      z=y+e

• multivariate & non-linear
• measurement errors

• {xi zi} i = 1:N zi = f(xi)+ei{xi, zi} i  1:N      zi  f(xi)+ei

• infer behaviour everywhere from a few examples
• little or no prior information on f(x)

• ŷ etc. indicates estimate
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DimensionalityDimensionality
• lose ability to see the shape of f(x)• lose ability to see the shape of f(x)

• try it in 13-D
• number of samples exponential in d• number of samples exponential in d

• if N OK in 1-D, Nd needed in d-D
• how do we know if “well spaced”?• how do we know if well-spaced ?

• how can we sample where the action is?
• observational vs experimental data!• observational vs experimental data!

• ALWAYS undersampled!
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What goes on in the Gaps?What goes on in the Gaps?

U i l A i ti• Universal Approximation
• AdvantageAdvantage

• can bend to (almost) any shape

• Disadvantage
• can bend to (almost) any shapecan bend to (almost) any shape

• Training data is all we have to go on
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Overfitting (sample data)
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Underfitting (sample data)
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Goldilocks
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Restricting “Flexibility”Restricting Flexibility
• use data to tell the estimator how to behave
• regularization/penalization

• penalize “roughness”• penalize roughness
• e.g. SSE + ρQ 

Q 2 ŵ ( T I) 1 T• Q = Σw2
ij→ ŵ=(ΦTΦ+ρI)-1 ΦTz

• use potentially complex structure
• data constrains where it can
• Q constrains elsewhere 
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Hold-out Method
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Cross ValidationCross Validation
• leave-one-out CV

• train on all but one• train on all but one
• test that one
• repeat N times
• compute performance

• m-fold CV
di ide sample into m non o erlapping sets• divide sample into m non-overlapping sets

• proceed as above
• all data used for training and testingall data used for training and testing

• more work but realistic performance estimates
• used to choose “hyper-parameters”
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Z1X1 Y1

Z2X2 Y2
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Z1X1 Y1

Z2X2 Y2

X Z YZ3X3 Y3Y vs Z

Z4X4 Y4
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generalization
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Adaptive Basis FunctionsAdaptive Basis Functions
• “linear” models• linear  models

• fixed pre-processing
t t “b i ”• parameters → cost “benign”

• easy to optimize
b tbut

• combinatorial
bit h i• arbitrary choices
what is best pre-processor to choose?
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The Multi-Layer PerceptronThe Multi-Layer Perceptron
• formulated from loose biological principles• formulated from loose biological principles
• popularized mid 1980s

• Rumelhart Hinton & Williams 1986Rumelhart, Hinton & Williams 1986
Werbos 1974, Ho 1964

• “learn” pre-processing stage from data
• layered, feed-forward structure

• sigmoidal pre-processing
• task-specific output

non-linear model
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Two-Layer MLPTwo-Layer MLP
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A Sigmoidal UnitA Sigmoidal Unit
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Combinations of SigmoidsCombinations of Sigmoids
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In 2-DIn 2-D
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from Pattern Classification, 2e, by Duda, Hart & Stork, © 2001 John Wiley



Universal ApproximationUniversal Approximation

li bi ti f “ h” i id• linear combination of “enough” sigmoids
• Cybenko, 1990y

• single hidden layer adequate
• more may be better

• choose hidden parameters (w, b) optimallychoose hidden parameters (w, b) optimally
problem solved?
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InterpretationInterpretation
• Minimising SSE equivalent to finding g g

conditional mean of target data
• infinite sample / global minimum• infinite sample / global minimum
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ProsPros

t• compactness
• potential to obtain same veracity with much p y

smaller model
• c f sparsity/complexity control in linearc.f. sparsity/complexity control in linear 

models

“ i l ” t i i l ith• “simple” training algorithm
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Compactness of ModelCompactness of Model
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Backpropagation AlgorithmBackpropagation Algorithm
Gradient Descent

Update Rule( ) ( ) ( ) ( ) ( ) 11 ,jr jr j r m mw t w t t t y t j L r Lη δ −+ = + ∈ ∈
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& Cons& Cons

• parameter → cost “malign”
• optimization difficultoptimization difficult
• many solutions possible

ff t f hidd i ht i• effect of hidden weights in 
output non-linear
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R lli B llRolling Ball
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Gradient DescentGradient Descent
dw/dt ∝ -∂J/ ∂w
w ← w - η ∂J/ ∂w
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Multi-Modal Cost SurfaceMulti-Modal Cost Surface
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Heading DownhillHeading Downhill
• assume• assume

• minimization (e.g. SSE)
• analytically intractabley y

• step parameters downhill
• wnew = wold + step in right directionnew old p g
• backpropagation (of error)

• slow but efficient

• conjugate gradients, Levenburg/Marquardt
• for preference
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backprop conjugate gradients

0 0 10 20 30
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ImplicationsImplications
• correct structure can get “wrong” answer• correct structure can get wrong  answer

• dependency on initial conditions
i ht b d h• might be good enough

• train / test (cross-validation) required
• is poor behaviour due to 

network structure?
ICs?ICs?

additional dimension in development
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RBF NN Warning!RBF NN Warning!
RBF NNs claimed to have unique solution• RBF NNs claimed to have unique solution

BUT
• who picks the pre-processing layer?

• direct optimisation of centres and widthsdirect optimisation of centres and widths
• some other method

L I P d l h “ li t ” t• L.I.P. models have “non-linear parameters” to 
select → multi-modal cost ≡ MLP
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Are multiple minima a problem?Are multiple minima  a problem?

t t i h• pros seem to outweigh cons
• good solutions often arrived at quicklygood solutions often arrived at quickly
• all previous issues apply

• sample density & distribution
• lack of prior knowledgelack of prior knowledge
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How to UseHow to Use

t “ li ” GLM• to “generalize” a GLM
• linear regression – curve-fittingg g

linear output + SSE

• logistic regression – classificationlogistic regression classification
logistic output + cross-entropy (deviance)
extend to multinomial ordinalextend to multinomial, ordinal

e.g. softmax outptut + cross entropy

• Poisson regression – count data
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What is Learned?What is Learned?
• the right thing• the right thing

• in a maximum likelihood sense
th ti ltheoretical

• conditional mean of target data, E(z|x)
• implies probability of class membership for 

classification P(Ci|x)
estimated

• if good estimate then y → E(z|x)
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Simple 1-D FunctionSimple 1-D Function
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More Complex 1-D ExampleMore Complex 1-D Example
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Local SolutionsLocal Solutions

2
F u n c t io n  A p p r o x im a t io n

1 5

2
F u n c t io n  A p p r o x im a t io n

0 . 5

1

1 . 5

Ta
rg

et

0 . 5

1

1 . 5

Ta
rg

et

N u m b e r  o f  H id d e n  N e u r o n s  S 1 : 9

1 9

D i f f ic u l t y  In d e x : 9

- 2 - 1 . 5 - 1 - 0 . 5 0 0 . 5 1 1 . 5 2
0

I n p u t

N u m b e r  o f  H id d e n  N e u r o n s  S 1 : 9

1 9

D i f f ic u l t y  In d e x : 9

- 2 - 1 . 5 - 1 - 0 . 5 0 0 . 5 1 1 . 5 2
0

I n p u t

1 9 1 9

EPSRC Winter School January 2008



A DichotomyA Dichotomy
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Linear Decision BoundaryLinear Decision Boundary
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Non-Linear Decision BoundaryNon-Linear Decision Boundary
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Over-fitted Decision BoundaryOver-fitted Decision Boundary
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