

Extraterrestrial Exosphere and Surface Simulations

Lunar Water Exosphere

Alexander Smolka

Lunar and Planetary Exploration Technical University of Munich

Alexander Smolka

Researcher, Technical University of Munich, Lunar and Planetary Exploration

8

Research Topic: *Modelling of the Lunar Water Exosphere* and its Interaction with the Surface

- </>>
- Methodology: Numerical simulations using our specially developed high-performance Julia code base.

Alexander Smolka

B.Sc. in Mechanical Engineering, RWTH Aachen University

M.Sc. in Aerospace, Technical University of Munich

Researcher, Technical University of Munich, Lunar and Planetary Exploration

Research Topic: *Modelling of the Lunar Water Exosphere* and its Interaction with the Surface

Methodology: Numerical simulations using our specially developed high-performance Julia code base.

Technical University of Munich

Technical University of Munich

(Image credit: NASA)

Surface-bounded Exosphere

Surface-bounded Exosphere

(Image credit: NASA)

We can simulate them individually!

Surface-bounded Exosphere

ies are highly dependent on the position orial/polar) and time (day/night)!	н	$\sim 1 - 10 \ cm^{-3}$	
	H ₂	$\sim 100 - 10^4 \ cm^{-3}$	
	Не	$\sim 100 - 5 \times 10^4 \ cm^{-3}$	
	ОН	~ 1 cm ⁻³	
	H₂O	$\sim 1 - 10^3 cm^{-3}$	
	Ne	$\sim 10^3 - 10^5 \ cm^{-3}$	
Lensin (equat			
		Comparison with Earth atmosphere: 2.687 $ imes$ 10 ¹⁹ cm^{-3}	າ'ເ

We can simulate them individually!

Surface-bounded Exosphere

(Image credit: NASA)

Sources & Sinks

- Solar wind
- Micrometeoroid Impact
- Micrometeoroid Impact Vaporization
- Sputtering

- Gravitational Escape
- Photolysis
- Sputtering
- Permanent Cold Trapping

Sources & Sinks

- Solar wind •
- Micrometeoroid Impact
- Micrometeoroid Impact Vaporization

lons:

≈ 9_{6%: p⁺}

≈ 4%: He*+

IMPLANTATIO

• Sputtering

- Gravitational Escape
- Photolysis
- Sputtering
- Permanent Cold Trapping

(Image credit: NASA)

Assumptions:

- 2D landing position calculation instead of 3D ODE trajectory solver
- Only neutral gases
 - Only gravity
- Steady-state conditions without Earth's influence
- ...

Lunar Exosphere Simulation

Modeling and Simulation of our Moon's Surface-Bounded Exosphere

RT-MA 2022/03

Julia in a Nutshell

Fast

Julia was designed from the beginning for high performance. Julia programs compile to efficient native code for multiple platforms via LLVM.

Dynamic

Julia is dynamically typed, feels like a scripting language, and has good support for interactive use.

Reproducible

Reproducible environments make it possible to recreate the same Julia environment every time, across platforms, with pre-built binaries.

Composable

Julia uses multiple dispatch as a paradigm, making it easy to express many object-oriented and functional programming patterns. The talk on the Unreasonable Effectiveness of Multiple Dispatch explains why it works so well.

https://julialang.org/

General

Julia provides asynchronous I/O, metaprogramming, debugging, logging, profiling, a package manager, and more. One can build entire Applications and Microservices in Julia. Open source

Julia is an open source project with over 1,000 contributors. It is made available under the MIT license. The source code is available on GitHub.

Conversion Reactions

Conversion Reactions

		Quiet Sun Photoreaction	Active Sun Photoreaction
	Practice	Rate	Rate
	Reaction	in $10^{-7} \ { m s}^{-1}$	in $10^{-7}~{ m s}^{-1}$
1	${ m H} + u \longrightarrow { m H}^+ + { m e}^-$	0.726	1.720
2	${ m H}_2 + u \longrightarrow { m H}(1{ m s}) + { m H}(1{ m s})$	0.480	1.090
	${ m H}_2 + u \longrightarrow { m H}(1{ m s}) + { m H}(2{ m s} \ { m or} \ 2{ m p})$	0.344	0.821
	${\rm H_2} + \nu \longrightarrow {\rm H_2}^+ + {\rm e}^-$	0.541	1.150
	${ m H}_2 + u \longrightarrow { m H} + { m H}^+ + { m e}^-$	0.095	0.279
17	$ m OH + u \longrightarrow O(3p) + H$	$(120.00) \ 65.400$	(138.00) 71.700
	${ m OH}+ u \longrightarrow { m O(1d)}+{ m H}$	$(70.10) \ 6.350$	$(176.00) \ 15.100$
	${ m OH}+ u \longrightarrow { m O(1s)}+{ m H}$	(8.33) 0.671	$(21.10) \ 1.640$
	$\rm OH + \nu \longrightarrow OH^+ + e^-$	(2.43) 2.470	$(6.43) \ 6.520$
18	${\rm H_2O} + \nu \longrightarrow {\rm OH} + {\rm H}$	103.000	176.000
	${ m H_2O}+ u \longrightarrow { m H_2}+{ m O(1d)}$	5.970	14.800
	$\rm H_2O + \nu \longrightarrow \rm H + \rm H + O$	7.550	19.100
	${ m H_2O}+ u \longrightarrow { m H_2O^+}+{ m e^-}$	3.310	8.280
	${ m H_2O}+ u \longrightarrow { m H}+{ m OH}^++{ m e}^-$	0.554	1.510
	${ m H_2O}+ u \longrightarrow { m H_2}+{ m O}^++{ m e}^-$	0.059	0.221
	$\rm H_2O + \nu \longrightarrow OH + H^+ + e^-$	0.131	0.407
Hue	ebner et al., 1992		

Conversion Reactions

	Quiet Sun Photoreaction Rate	Active Sun Photoreaction Rate
Reaction	in 10^{-7} s^{-1}	in $10^{-7} \ { m s}^{-1}$
1 $H + \nu \longrightarrow H^+ + e^-$	0.726	1.720
2 $H_2 + \nu \longrightarrow H(1s) + H(1s)$	0.480	1.090
${ m H}_2 + u \longrightarrow { m H}(1{ m s}) + { m H}(2{ m s} { m or} { m 2p})$	0.344	0.821
${ m H_2} + u \longrightarrow { m H_2}^+ + { m e}^-$	0.541	1.150
${ m H}_2 + u \longrightarrow { m H} + { m H}^+ + { m e}^-$	0.095	0.279
17 $OH + \nu \longrightarrow O(3p) + H$	(120.00) 65.400	(138.00) 71.700
${ m OH}+ u \longrightarrow { m O(1d)}+{ m H}$	$(70.10) \ 6.350$	(176.00) 15.100
${ m OH}+ u \longrightarrow { m O(1s)}+{ m H}$	(8.33) 0.671	$(21.10) \ 1.640$
${ m OH}+ u \longrightarrow { m OH}^++{ m e}^-$	$(2.43) \ 2.470$	$(6.43) \ 6.520$
18 $H_{-}O \pm u \longrightarrow OH \pm H$	103 000	176 000

Table 1. Fractions of Incident Protons Entering Each Branch After Surface Interaction

Backscatter H	Sputtered H	Desorbing H	Convert to H ₂	Convert to OH	Convert to H ₂ O
.01	.0001	.27	.6	.1	.02
Crider and Vondrak, 2002					

Conversion Reactions

Conversion Reactions

Conversion Reactions

Conversion Reactions

Conversion Reactions

Irradiation

- bombardment with D+; dissociation upon impact
- Characterisation of Irradiated Samples
 - ToF-SIMS to measure water group molecule concentration
 - ERDA (Elastic Recoil Detection Analysis) to determine deuterium depth
- Laser Pulses to Simulate MMI TPD Measurements

TPD

Analyze

E

Conversion Reactions

Irradiation

Shake

- bombardment with D+; dissociation upon impact
- Characterisation of Irradiated Samples
 - ToF-SIMS to measure water group molecule concentration
 - ERDA (Elastic Recoil Detection Analysis) to determine deuterium depth
- Laser Pulses to Simulate MMI TPD Measurements

TPD

Analyze

Conversion Reactions

Conversion Reactions

