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OverviewOverview

Problem: entity extraction from (remote sensing) images. 
Need for prior ‘shape’ knowledge.

Modelling prior shape knowledge: higher-order active 
contours (HOACs).

Two examples: networks (roads) and circles (tree crowns).
Difficulties.

Ph fi ldPhase fields:
What are they and why use them?
Phase field HOACsPhase field HOACs.
Two examples: networks (roads) and circles (tree crowns).

Future.Future.
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Problem: entity extractionProblem: entity extraction

Ubiquitous in image processing and computer 
vision:vision: 

Find in the image the region occupied by particular 
entities.entities.

E.g. for remote sensing: road network, tree crowns,…
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Problem formulationProblem formulation

Calculate a MAP estimate of the region:

R̂ = argmax
R

P(RjI ; K )

P(RjI ; K ) / P(I jR; K )P(RjK )

In practice, minimize an energy: 

( j ; ) ( j ; ) ( j )

p , gy

E(R; I ) = ¡ ln P(I jR; K ) ¡ ln P(RjK )
= E (I ; R) + E (R) + const

R̂ = argmin
R

E(R; I )

= EI (I ; R) + EG (R) + const

R



5

Building E : active contoursBuilding EG: active contours

A region is represented by 
its boundary ∂R = [γ] theits boundary, ∂R  [γ], the 
‘contour’.
Standard prior energies: RS1

γ

R 2

Standard prior energies:
Length of ∂R and area of R.
Single integrals over the

∂Rγ

Single integrals over the 
region boundary:

Short range dependenciesShort range dependencies.
Boundary smoothness.

Insufficient prior knowledge.p g
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DifficultiesDifficulties

(Remote sensing) images are 
complexcomplex.
Regions of interest distinguished by 
their shapetheir shape. 

But topology can be non-trivial, and 
unknown a prioriunknown a priori.

Strong prior information about the 
region needed without constrainingregion needed, without constraining 
the topology.
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higher order activehigher-order active 

contourscontours
Introduce prior knowledge via long-range 
dependencies between tuples of pointsdependencies between tuples of points.

Dependent
° (t); _° (t)° (t0); _° (t0)

How? Multiple integrals over the contour.
E E lid i i t t i t tE.g. Euclidean invariant two-point term:

E(° ) = ¡
ZZ

dt dt0° (t) ¢° (t0) ª (j° (t) ¡ ° (t0)j)E ( ) ¡ dt dt _(t) ¢_(t ) (j (t) ¡ (t )j)
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Prior for networksPrior for networks

EG (R) = ¸ L (@R) + ®A(R)
¯

ZZ
dt dt0 ° (t) ¢° (t0) ª (j° (t) ° (t0)j)

Ψ(r)

¡
2

dt dt0 _° (t) ¢_° (t0) ª (j° (t) ¡ ° (t0)j)

rGradient descent with this energy.
A perturbed circle evolves towards a structure 

r

composed of arms joining at junctions.
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Prior for a gas of circlesPrior for a gas of circles

The same energy EG can model a 
‘gas of circles’ for certain parametergas of circles  for certain parameter 
ranges.

Which ranges?Which ranges?
A circle should be a stable 
configuration of the energy (localconfiguration of the energy (local 
minimum). 

Stability analysisStability analysis.
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Phase diagramsPhase diagrams

Circle BarCircle Bar
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Optimization problemOptimization problem

Minimize E(R, I) = EI(I, R) + EG(R).
Algorithm: gradient descent using distanceAlgorithm: gradient descent using distance 
function level sets.
B t th di t f th HOAC t i l lBut the gradient of the HOAC term is non-local, 
and requires: 

The extraction of the contour;
Many integrations around the contour;
Velocity extension.
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Example I: HOAC resultsExample I: HOAC results
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Example I: HOAC resultsExample I: HOAC results
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Example II: HOAC resultsExample II: HOAC results
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Example II: HOAC resultsExample II: HOAC results



16

Problems with HOACsProblems with HOACs

Modelling:
Space of regions is complicated to express in the p g p p
contour representation.
Probabilistic formulation is difficult.

Parameter and model learning are hampered. 

Algorithm:
N t h t l i l f dNot enough topological freedom.
Gradient descent is complex to implement for 
higher-order termshigher-order terms.
Slow. 

Solution: ‘phase fields’Solution: phase fields . 
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Phase fieldsPhase fields

Phase fields are a level set representation (ζz(φ) 
= {x : φ(x) > z}) but the functions φ are {x : φ(x) > z}), but the functions, φ, are 
unconstrained. 
How do we know we are modelling regions?How do we know we are modelling regions?

E0( Á) =
Z

d2x
½D

r Á ¢r Á + (
1

Á4 ¡
1

Á2)
¾

E0( Á)
-

d x
2

r Á ¢r Á ¸ (
4

Á ¡
2

Á )

ÁR = arg min
Á: ³ (Á)= R

E0(R)

∂R

φR = 1

Á: ³ (Á)= R

φR  1

φR = -1
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Relation to active contoursRelation to active contours 

One can show that

E (Á ) ' L (@R) φ
R1φ

R2φ
R3

E0(ÁR ) ' ¸ C L (@R)
φR is a minimum for fixed R. 

Thus gradient descent with E0 mimics
gradient descent with L: ‘valley 
following’.

Can also add odd potential term to 
mimic:
E0(ÁR ) ' ¸ C L (@R) + ®C A(R)
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Why use them?Why use them?

Complex topologies are easily represented.
Representation space is linear:Representation space is linear:

φ can be expressed, e.g., in wavelet basis for 
multiscale analysis of shapemultiscale analysis of shape.
Probabilistic formulation (relatively) simple.

Gradient descent is based solely on the PDEGradient descent is based solely on the PDE
arising from the energy functional:

N i iti li ti d h l i tiNo reinitialization or ad hoc regularization.
Implementation is simple and the algorithm is fast.
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Why use them?Why use them?

Neutral initialization:
No initial regionNo initial region.
No bias towards “interior” or 
“exterior”.exterior .

Greater topological freedom:
Can change number ofCan change number of 
connected components and 
number of handles without +
splitting or wrapping.
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How to write HOACs as 
phase fields?

Use that ∇ φR is zero except near ∂R, where it is 
proportional to the normal vectorproportional to the normal vector.

EQ (R) = ¡
¯C

2

ZZ
dt dt0 _° (t) ¢G C (° (t); ° (t0)) ¢_° (t0)( )

2
( ) ( ( ) ( )) ( )

E (Á)
¯

ZZ
d2 d2 0 r Á( ) ¢G( 0) ¢r Á( 0)EN L (Á) = ¡

2 - 2
d2x d2x0 r Á(x) ¢G(x; x0) ¢r Á(x0)

One can show that
E (Á ; ¯; G) ' E (R; ¯ ; G)EN L (ÁR ; ; G) EQ (R; C ; G)



22

Phase fields : likelihood 
energies EI

∇ φ : normal vector to the contour.
∇ φ·∇ φ : boundary indicator∇ φ·∇ φ : boundary indicator.
(1 ± φ)/2 : characteristic function of the region 
(+) it l t ( )(+) or its complement (-).
Using these elements, one can construct the 
equivalents of active contour and HOAC 
likelihoods.
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Optimization problemOptimization problem

Minimize

E (R I ) E (I R) E (R)E (R; I ) = EI (I ; R) + EG (R)
= EI (I ; R) + E0(R) + EN L (R)

Algorithm: gradient descent, but…

EI (I ; R) E0(R) EN L (R)

g g ,
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Major advantage of phase j g p
fields for HOAC energies

Whereas, due to the multiple integrals, HOAC 
terms requireterms require

Contour extraction, contour integrations, and force
extension,extension,

Phase field HOACs require only a 
convolution:convolution:

±EN L = ¯
Z

d2x0r 2G( x ¡ x0) Á( x0)
±Á( x)

=
-

d x r G( x ¡ x ) Á( x )
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Phase field HOACs: resultsPhase field HOACs: results
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Phase field HOACs: VHR 
image results
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Phase field HOACs: tree 
crown results



28

Phase field HOACs: resultsPhase field HOACs: results
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FutureFuture

New prior models 
Directed and rectilinear networks (rivers, big ( , g
cities…).
‘Gas of rectangles’;
Controlled perturbed circle.

Multiscale models;
New algorithms (multiscale, stochastic,…); 
Parameter estimation;
Higher-dimensions;
……
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Thank youThank you
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Stability analysisStability analysis

EC;g( ° 0 + ±° ) =
"

¸ C2¼r 0 + ®C¼r 2
0 ¡

¯C
2
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HOACs: EHOACs: EI

Linear term that favours large gradients normal
to contourto contour.

EI ;1( ° ) =
Z

S1
dt _° ( t ) £ r I ( ° ( t ) )

Quadratic term that favours pairs of points with 

S

tangents and image gradients parallel or anti-
parallel. gradients

EI ;2(° ) = ¡
ZZ

dt dt0 _° ¢_° 0 (r I ¢r I 0) ª (j° (t) ¡ ° (t0)j)

tangent vectors weighting function
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Nonlinearity in the model, not y ,
the representation

Space of regions R is not a linear space.
Possibility 1: use representation spacePossibility 1: use representation space 
isomorphic to R and put energy/probability 
on this spaceon this space.
Possibility 2: use larger linear space with 

b bilit k d li b tprobability peaked on nonlinear subset
isomorphic to R .
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Nonlinearity in the model, not y ,
the representation: example

Probability distribution P on R 2. 
P pushes forward to Q on S1P pushes forward to Q on S .
If P is strongly peaked at r0 then 
Q(θ) ( P(r0, θ).Q(θ) ( ( 0, θ)
Gradient descent with –ln(P) on R 2

mimics gradient descent with -ln(Q) g ( )
on S1 (‘valley following’).

P( r ; µ) = d2x e¡ E ( r ;µ)

£ exp ¡ ( r 4
4 ¡ r 2

2 )
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Turing stabilityTuring stability

To avoid decay of interior and exterior, we 
require stability of functions φ± = ± 1:q y φ

δ2E/δφ2 must be positive definite (E = E0 + ENL). 
For prior terms, this is diagonal in the Fourier p , g
basis:

±2E
(Á§ ) = ±(k; k0)

n
k2(D ¡ ¯Ĝ(k)) + 2( ¨ ®)

o

Gives condition on parameters.
±Á(k0)±Á(k)

(Á§ ) = ±(k; k ) k (D ¡ G(k)) + 2(¸ ®)

p
Better result would be existence and 
uniqueness of φR for ‘any’ R.q φR y


