

Shape modelling via higher-order active contours and phase fields

Ian Jermyn Josiane Zerubia Marie Rochery Peter Horvath

Ting Peng Aymen El Ghoul

VINRIA

Overview

- Problem: entity extraction from (remote sensing) images.
- Need for prior ‘shape’ knowledge.
- Modelling prior shape knowledge: higher-order active contours (HOACs).
- Two examples: networks (roads) and circles (tree crowns).
- Difficulties.
- Phase fields:
- What are they and why use them?
- Phase field HOACs.
- Two examples: networks (roads) and circles (tree crowns).
- Future.

Problem: entity extraction

- Ubiquitous in image processing and computer vision:
- Find in the image the region occupied by particular entities.
- E.g. for remote sensing: road network, tree crowns, ...

RINRIA

Problem formulation

- Calculate a MAP estimate of the region:

$$
\begin{array}{r}
\hat{R}=\arg \max _{R} P(R j l ; K) \\
P(R j l ; K) / P(I j R ; K) P(R j K)
\end{array}
$$

- In practice, minimize an energy:

$$
\begin{aligned}
E(R ; I) & =i \ln P(I j R ; K) i \ln P(R j K) \\
& =E_{l}(I ; R)+E_{G}(R)+\text { const } \\
& \hat{R}=\arg \min _{R} E(R ; I)
\end{aligned}
$$

Building E_{G} : active contours

- A region is represented by its boundary, $\partial \mathrm{R}=[\gamma]$, the 'contour'.
- Standard prior energies:
- Length of $\partial \mathrm{R}$ and area of R.

- Single integrals over the region boundary:
- Short range dependencies.
- Boundary smoothness.
- Insufficient prior knowledge.

Difficulties

- (Remote sensing) images are complex.
- Regions of interest distinguished by
 their shape.
- But topology can be non-trivial, and unknown a priori.
- Strong prior information about the region needed, without constraining the topology.

Building a better E_{G} : higher-order active contours

- Introduce prior knowledge via long-range dependencies between tuples of points.

- How? Multiple integrals over the contour.
- E.g. Euclidean invariant two-point term:

$$
E\left({ }^{\circ}\right)=\mathrm{i} \quad \text { dt dt }{ }^{00}(\mathrm{t}) \Phi_{-}^{\circ}\left(\mathrm{t}^{9}\right)^{\mathrm{a}}\left(\mathrm{j}^{\circ}(\mathrm{t}) \mathrm{i}^{\circ}\left(\mathrm{t} \mathrm{t}^{9} \mathrm{j}\right)\right.
$$

Prior for networks

$$
\begin{aligned}
& E_{G}(R)=, L\left(\mathbb{R}_{2}\right)^{+® A(R)} \\
& \mathrm{i}^{2} \quad \mathrm{dt} \mathrm{dt}^{0} _(\mathrm{t}) \Phi^{\circ}\left(\mathrm { t } \mathrm { t } ^ { \mathrm { a } } { } ^ { \mathrm { a } } \left(\mathrm{j}^{\circ}(\mathrm{t}) \mathrm{i}^{\circ}(\mathrm{t} 9 \mathrm{~g})\right.\right. \\
& \text { - Gradient descent with this energy. }
\end{aligned}
$$

- A perturbed circle evolves towards a structure composed of arms joining at junctions.

Prior for a gas of circles

- The same energy E_{G} can model a 'gas of circles' for certain parameter ranges.
- Which ranges?
- A circle should be a stable configuration of the energy (local minimum).
- Stability analysis.

Phase diagrams

Circle

Bar

Optimization problem

- Minimize $E(R, I)=E_{I}(I, R)+E_{G}(R)$.
- Algorithm: gradient descent using distance function level sets.
- But the gradient of the HOAC term is non-local, and requires:
- The extraction of the contour;
- Many integrations around the contour;
- Velocity extension.

Ariana

Example I: HOAC results

VINRIA
frame

Example I: HOAC results

Example II: HOAC results

Gintia

Example II: HOAC results

Problems with HOACs

- Modelling:
- Space of regions is complicated to express in the contour representation.
- Probabilistic formulation is difficult.
- Parameter and model learning are hampered.
- Algorithm:
- Not enough topological freedom.
- Gradient descent is complex to implement for higher-order terms.
- Slow.
- Solution: 'phase fields'.

Phase fields

- Phase fields are a level set representation ($\zeta_{z}(\phi)$ $=\{x: \phi(x)>z\}$), but the functions, ϕ, are unconstrained.
- How do we know we are modelling regions?

$$
E_{0}(\hat{A})={ }^{Z} d^{2} x \frac{1}{2}^{1 / 2} r \hat{A} \not \subset r A ́+\left(\frac{1}{4} \hat{A}^{4} ; \frac{1}{2} \hat{A}^{2}\right)^{3}
$$

$$
A_{R}=\arg _{A: P} \min _{(A)=R} E_{0}(R)
$$

Relation to active contours

- One can show that

$$
E_{0}\left(A_{R}\right)^{\prime} \quad, c L(@ R)
$$

- ϕ_{R} is a minimum for fixed R.
- Thus gradient descent with E_{0} mimics gradient descent with L: 'valley following'.
- Can also add odd potential term to mimic:

$$
E_{0}\left(A_{R}\right)^{\prime}, c L(@ R)+®_{C} A(R)
$$

Why use them?

- Complex topologies are easily represented.
- Representation space is linear:
- ϕ can be expressed, e.g., in wavelet basis for multiscale analysis of shape.
- Probabilistic formulation (relatively) simple.
- Gradient descent is based solely on the PDE arising from the energy functional:
- No reinitialization or ad hoc regularization.
- Implementation is simple and the algorithm is fast.

Why use them?

- Neutral initialization:
- No initial region.
- No bias towards "interior" or "exterior".
- Greater topological freedom:
- Can change number of connected components and number of handles without splitting or wrapping.

How to write HOACs as phase fields?

- Use that $\mathrm{s} \phi_{\mathrm{R}}$ is zero except near $\partial \mathrm{R}$, where it is proportional to the normal vector.

- One can show that

$$
\mathrm{E}_{\mathrm{NL}}\left(\dot{A}_{\mathrm{R}} ;{ }^{-} ; \mathrm{G}\right)^{\prime} \mathrm{E}_{\mathrm{Q}}\left(\mathrm{R} ;{ }^{-} \mathrm{c} ; \mathrm{G}\right)
$$

Phase fields: likelihood energies $\mathrm{E}_{\text {| }}$

- s ϕ : normal vector to the contour.
- s ϕ ts ϕ : boundary indicator.
- $\left(1{ }^{*} \phi\right) / 2$: characteristic function of the region $(+)$ or its complement (-).
- Using these elements, one can construct the equivalents of active contour and HOAC likelihoods.

Optimization problem

- Minimize

$$
\begin{aligned}
E(R ; I) & =E_{1}(I ; R)+E_{G}(R) \\
& =E_{1}(I ; R)+E_{0}(R)+E_{N L}(R)
\end{aligned}
$$

- Algorithm: gradient descent, but...

Major advantage of phase fields for HOAC energies

- Whereas, due to the multiple integrals, HOAC terms require
- Contour extraction, contour integrations, and force extension,
- Phase field HOACs require only a convolution:

$$
\frac{ \pm E_{N L}}{ \pm \hat{A}(x)}=-{ }^{Z} d^{2} x^{0} r^{2} G(x ; x 9 A(x)
$$

Ariana

Phase field HOACs: results

$\mathrm{CH}_{5 / 5}$

Université
nice sorma

Phase field HOACs: VHR image results

Phase field HOACs: tree crown results

ज0 0 060 0000000000000000 000000000000000000
 30 人日0 0 0000000000000 4080000000000000900
 08,00000000000000094 opporborpogeoge00000

Phase field HOACs: results

Future

- New prior models
- Directed and rectilinear networks (rivers, big cities...).
- 'Gas of rectangles’;
- Controlled perturbed circle.
- Multiscale models;
- New algorithms (multiscale, stochastic,...);
- Parameter estimation;
- Higher-dimensions;
- ...

Thank you

Stability analysis

$$
\begin{aligned}
& +a_{0}, c^{1 / 4}+{ }^{\circledR} C^{1 / 4} 0 i \frac{-}{2} 4 \frac{Z}{2}{ }_{0}^{21 / 4} F_{10} d p \\
& +{ }_{k}^{X} j a_{k} j^{2}, C^{1 / 4}{ }_{0} k^{2}+{ }^{\circledR} C^{1 / 4}
\end{aligned}
$$

HOACs: E_{I}

- Linear term that favours large gradients normal to contour.

$$
\mathrm{E}_{1 ; 1}\left({ }^{\circ}\right)={ }_{\mathrm{s}^{1}} \mathrm{dt}_{-}^{\circ}(\mathrm{t}) £ \mathrm{El}\left(^{\circ}(\mathrm{t})\right)
$$

- Quadratic term that favours pairs of points with tangents and image gradients parallel or antiparallel.

gradients

Nonlinearity in the model, not the representation

- Space of regions S is not a linear space.
- Possibility 1: use representation space isomorphic to S and put energy/probability on this space.
- Possibility 2: use larger linear space with probability peaked on nonlinear subset isomorphic to S.

Nonlinearity in the model, not the representation: example

- Probability distribution P on S^{2}.
- P pushes forward to Q on S^{1}.
- If P is strongly peaked at r_{0} then $Q(\theta)\left(P\left(r_{0}, \theta\right)\right.$.
- Gradient descent with $-\ln (P)$ on s^{2} mimics gradient descent with $-\ln (\mathrm{Q})$ on S^{1} ('valley following').

$$
\begin{aligned}
P(r ; \mu) & =d^{2} x e^{i E(r ; \mu)} \\
& £ \exp _{i}\left(\frac{r^{4}}{4} i \frac{r^{2}}{2}\right)
\end{aligned}
$$

Turing stability

- To avoid decay of interior and exterior, we require stability of functions $\phi .={ }^{*} 1$:
- $\delta^{2} \mathrm{E} / \delta \phi^{2}$ must be positive definite ($\mathrm{E}=\mathrm{E}_{0}+\mathrm{E}_{\mathrm{NL}}$).
- For prior terms, this is diagonal in the Fourier basis:

$$
\frac{ \pm^{2} E}{ \pm \dot{A}\left(k^{g} \pm \dot{A}(k)\right.}\left(A_{\S}\right)= \pm\left(k ; k^{g}{ }^{n} k^{2}\left(D_{i}-G(k)\right)+2(,\right.
$$

- Gives condition on parameters.
- Better result would be existence and uniqueness of ϕ_{R} for 'any' R.

