Recognising Animals

Heydar Maboudi Afkham, Francis Bach, Sascha Burghardt, Youssouf Chhewarala, Katarina Domijan, Xavier Giró, **Allan Hanbury**, Beatriz Marcotegui, Branislav Mičušík, Christophe Millet, Pierre-Alain Moëllic, Montse Pardas, Alireza Tavakoli Targhi, Alexandra Teynor, Simon Wilson

E-team work summary

- 1. Choosing a challenging problem:
 - Animal recognition in still images
- 2. Preparing a dataset
 - Manual annotation of the Corel dataset of 60000 images
- 3. Feature extraction and segmentation
- 4. Classification experiments

E-team Members

- CEA-LIST, France:
 - Christophe Millet, Pierre-Alain Moëllic
- CMM, Ecole des Mines de Paris, France:
 - Francis Bach, Beatriz Marcotegui, Youssouf Chhewarala
- KTH, Sweden
 - Alireza Tavakoli Targhi, Heydar Maboudi Afkham
- PRIP, Vienna University of Technology, Austria:
 - Allan Hanbury, Branislav Mičušík
- Trinity College, Dublin, Ireland (TCD)
 - Katarina Domijan, Simon Wilson
- University of Freiburg, Germany (UFR)
 - Alexandra Teynor, Sascha Burghardt
- Polytechnic University of Catalunia, Spain (UPC)
 - Montse Pardas, Xavier Giró

Challenging problem

- Recognition of Animals in Still Images
- Manual text annotation of 60000 Corel images with animal type or (no animal)

• 1289 images have manual segmentations:

Further examples

Region-based annotation tool (UPC)

- Java tool for the annotation of objects and parts.
- Region selection through Partition Tree navigation

Automatic Segmentation

• Applied a morphological waterfall scheme

Each region of a coarse segmentation will appear identical in a finer segmentation or will be subdivided into one or more sub-regions.

Waterfall segmentation

- Ranks the importance of a frontier with respect to its neighbourhood.
- If a frontier is surrounded by higher frontiers, it will disappear.

Waterfall construction

• An extremely efficient graph-based waterfall segmentation algorithm was used.

• Applied to the inverse quasi-distance function on boundaries based on learning (Malik group).

Automatic segmentation examples

manual

Automatic segmentation examples

Wf 1 and 2

Manual segmentation

Feature extraction

- Local Features (UFR)
 - DoG interest points, wavelet based interest points with Laplacian scale selection.
 - For each interest point, 3 kinds of features were calculated: hsv color histograms, sift features and gloh features.
- Texture features (PRIP + CEA)
 - LEP local edge patterns: 512-bin histogram, LBPs applied to the edge image
 - Texton Histogram: 64 bins
- Color features (PRIP + CEA)
 - RGB histogram: 64-bin histogram where R, G, B are quantized in 4 values each
 - CIELAB histogram: 64 bins per channel
 - HSV histogram: 162-bins H is quantized in 18 values, S in 3 and V in 3
- MPEG-7 features (UPC)

•

Classification on 1289 images (CEA and UFR)

- The images having manual segmentations were used.
- 14 classes
- Compared results obtained with:
 - Local features (bags of keypoints)
 - Harris Laplace Detector
 - SIFT, HSV histograms
 - Automated Segmentation
 - Lowest level of the Waterfall segmentation hierarchy having at least 10 regions chosen.
 - Each region classified and the animal class with the highest surface area is attributed to the image.
 - Global features
 - Same features used for local features, but calculated over the whole image

Classification rate for different detection strategies						
	local feature	automatic	global			
	histograms	$\operatorname{segmentation}$	features			
cheetah	50.00	83.3	33.33			
cougar	15.00	36.8	20			
coyote	26.32	25.0	25			
deer	50.00	0	35.29			
dog	82.50	67.5	72.5			
$_{ m elephant}$	25.00	60.0	40			
goat	65.00	26.3	65			
hippopo	50.00	12.5	50			
horse	87.50	75.7	65			
leopard	64.29	100	42.86			
lion	80.00	15.8	55			
moose	0	0	33.33			
$_{ m rhino}$	16.67	0	8.33			
$_{ m tiger}$	80.00	44.4	50			
total	58.85	45.4	48.46			

- For animal classes with distinct texture, the segmentation approach works well
- Using context information is beneficial

More difficult classification experiment

- 15000 images
- The training and testing is done using 10-fold cross-validation
- Training and testing images listed for 8 animals: tiger, elephant, goat, lion, horse, cougar, coyote, dog.
- Training set: 90 positive training images and 200 negative training images.
- Testing set: 14710 images, containing both positive and negative examples.

Some results for this experiment (UFR)

Classification rate

Fts + classifier	tiger	elephant	goat	lion
UFR-chisto-v1 + SVM	96.4 (+/- 0.01)	95.4 (+/- 0.02)	92.5 (+/- 0.02)	94.8 (+/- 0.01)
PRIP global + SVM	92.0 (+/- 0.03)	91.0 (+/- 0.0)	89.2 (+/- 0.03)	93.3 (+/- 0.01)
UFR plus PRIP + SVM	94.79 (+/- 0.01)	92.0 (+/- 0.01)	91.1 (+/- 0.02)	94.4 (+/- 0.01)

Classification rate

Fts + classifier	horse	cougar	coyote	dog
UFR-chisto-v1 + SVM	86.3 (+/- 0.02)	91.98 (+/- 0.03)	92.7 (+/- 0.03)	83.42 (+/- 0.01)
PRIP global + SVM	82.6 (+/- 0.01)	86.2 (+/- 0.01)	89.3 (+/- 0.04)	82.4 (+/- 0.0)
UFR plus PRIP + SVM	84.6 (+/- 0.01)	88.7 (+/- 0.01)	91.5 (+/- 0.03)	83.6 (+/- 0.0)

Conclusion

- Test protocol with 15000 test images difficult as only about 10-200 images are true positives one gets a high false negative rate.
- Some features more discriminative than others
 - Advances made in classification and feature selection using Bayesian methods (TCD)
 - However still computationally intensive