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E team work summaryE-team work summary

1. Choosing a challenging problem:
– Animal recognition in still images

2. Preparing a dataset
– Manual annotation of the Corel dataset of 60000 imagesg

3. Feature extraction and segmentation
4 Classification experiments4. Classification experiments
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Challenging problemChallenging problem
• Recognition of Animals in Still Imagesecog o o s S ges
• Manual text annotation of 60000 Corel images with 

animal type or (no animal)animal type or (no animal)



• 1289 images have manual segmentations :





Further examplesFurther examples



Region-based annotation tool (UPC)
• Java tool for the annotation of objects and parts.
• Region selection through Partition Tree navigation



Automatic SegmentationAutomatic Segmentation
• Applied a morphological waterfall schemepp p g

Each region of a coarse segmentation will appear identical in a finer
segmentation or will be subdivided into one or more sub-regions.



Waterfall segmentationWaterfall segmentation
• Ranks the importance of a frontier with respect to its• Ranks the importance of a frontier with respect to its 

neighbourhood.
If a frontier is s rro nded b higher frontiers it ill• If a frontier is surrounded by higher frontiers, it will 
disappear.



Waterfall constructionWaterfall construction



• An extremely efficient graph-based waterfall 
segmentation algorithm was used.seg e tat o a go t was used.

• Applied to the inverse quasi-distance function on 
boundaries based on learning (Malik group).bou d es b sed o e g ( g oup).

Watershed (level 0) Waterfall (level 2)Waterfall (level 1)



Automatic segmentation examplesAutomatic segmentation examples
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Automatic segmentation examplesAutomatic segmentation examples
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Feature extraction
• Local Features (UFR)

– DoG interest points, wavelet based interest points with Laplacian scale 
selectionselection. 

– For each interest point, 3 kinds of features were calculated: hsv color 
histograms, sift features and gloh features.

• Texture features (PRIP + CEA)
– LEP local edge patterns: 512-bin histogram, LBPs applied to the edge 

iimage 
– Texton Histogram: 64 bins

• Color features (PRIP + CEA)• Color features (PRIP + CEA)
– RGB histogram: 64-bin histogram where R, G, B are quantized in 4 values 

each
– CIELAB histogram: 64 bins per channel
– HSV histogram: 162-bins - H is quantized in 18 values, S in 3 and V in 3

• MPEG-7 features (UPC)
• …



Classification on 1289 images 
(CEA and UFR)

• The images having manual segmentations were used• The images having manual segmentations were used.
• 14 classes

C d l b i d i h• Compared results obtained with:
– Local features (bags of keypoints)

H i L l D t t• Harris Laplace Detector
• SIFT, HSV histograms

– Automated Segmentationu o ed Seg e o
• Lowest level of the Waterfall segmentation hierarchy having at 

least 10 regions chosen.
• Each region classified and the animal class with the highest surface• Each region classified and the animal class with the highest surface 

area is attributed to the image.
– Global features

• Same features used for local features, but calculated over the whole 
image



• For animal classes with distinct texture, the 
segmentation approach works wellsegmentation approach works well

• Using context information is beneficial



More difficult classification 
experiment

• 15000 images
• The training and testing is done using 10-fold cross-g g g

validation
• Training and testing images listed for 8 animals:Training and testing images listed for 8 animals:  

tiger, elephant, goat, lion, horse, cougar, coyote, dog.
• Training set: 90 positive training images and 200• Training set: 90 positive training images and 200 

negative training images.
T ti t 14710 i t i i b th iti• Testing set: 14710 images, containing both positive 
and negative examples.



Some results for this experiment 
(UFR)



ConclusionConclusion
T t t l ith 15000 t t i diffi lt l• Test protocol with 15000 test images difficult as only 
about 10-200 images are true positives – one gets a 
hi h f l ti thigh false negative rate.

• Some features more discriminative than others
– Advances made in classification and feature selection using g

Bayesian methods (TCD)
– However still computationally intensive


