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E-team: Visual Saliency
topics overview

® Object classes learning and recognition :

® Interest points, Local features, patches :

* Relations between local features :
® Spatio-temporal salient regions :

® Texture :

® Relations to Human visual attention :
® Copy detection:

® Eyetracking, perceptual interface:
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Human actions: Motivation

e Huge amount of video is available and growing BB |C lylelileRerlEe

e Human actions are major events in movies, {1 Tube
TV news, personal video ... Grokicont Yeutoe

Action recognition useful for:

» Content-based browsing
e.g. fast-forward to the next goal scoring scene
* Video recycling
e.g. find “Bush shaking hands with Putin”
 Human scientists
Influence of smoking in movies on adolescent smoking



What are human actions?

Definition 1: E
e Physical body motion '
[Niebles et al.’06, Shechtman&Irani’05, |

Dollar et al.’05, Schuldt et al.’04, Efros et al.’03
Zelnik-Manoré&lrani’O1, Yacoob&Black’'98,
Polana&Nelson’97, Bobick&Wilson’95, ... ]

KTH action dataset

Definition 2;




Context defines actions




Challenges In action recognition

« Similar problems to static object recognition:
variations in views, lightning, background, appearance, ...

» Additional problems: variations in individual motion; camera motion

i 1 ! : . .
Example: s E ‘; Difference in shape
PO R
fx \ y = Difference in motion
Drinking
Both actions are similar in
. . overall shape (human
. % g posture) and motion
1 | Al hand motion
Smoking Lgr ( )

) Data variation for actions might be higher than for objects
But: Motion provides an additional discriminative cue



Actinn datacat and annntatinn
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* No datasets with realistic action classes are available

» This work: first attempt to approach action detection and recognition
In real movies: “Coffee and Cigarettes”; “Sea of Love”

“Drinking”: 159 annotated samples
“Smoking”: 149 annotated samples

Spatial annotation Temporal annotation

First frame Keyframe Last frame

head rectangle ﬁ A l "‘i

torso rectangle






Actions == space-time objects?

“stable-
view”
objects

“atomic”
actions

smoklng | hand shaklng drlnklng

Obijective:
take
advantage
of space-
time shape




Action features
___—~ HOG features

—— HOF features

features: f1, f2, f3,...
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Histogram features

HOG: histograms of HOF: histograms of

oriented gradient optic flow
dx :H: Hi| Ho> dx 7 Hy| Ho
“ 5| H3| Ha A P51 H3| Hg

" Key-frame

~1077 cuboid features

Choosing 10"3 randomly \_ { :v —|| o ||[—]| S

4 grad. orientation bins 4 OF direction bins
+ 1 bin for no motion




Action learning

f1 1k selected features
fQ_III-IIl T
Fanaaltlll boostlng:> H(z) =sgn()_ Oét@(@))
fasialidl t=1

o weak classifier

o Efficient discriminative classifier [Freund&Schapire’97]

AdaBoost: » Good performance for face detection [Viola&Jones'01]
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Action classification test

A

Random
motion
patterns
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e Additional shape information does not seem to improve the

space-time classifier

e Space-time classifier and static key-frame classifier might have

complementary properties



Classifier properties

Compare selected features by
» Space-time action classifier (HOF features)
 Static key-frame classifier (HOG features)

Training output: Accumulated feature maps

boosted space-time features

y-axis

time-axis

(a)

Space-time classifier Static keyframe classifier



Keyframe priming

Training

Positive Negative

training training

sample samples
Test
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Action detection

Test set:
» 25min from “Coffee and Cigarettes” with GT 38 drinking actions
* No overlap with the training set in subjects or scenes

Detection:
» search over all space-time locations and spatio-temporal
extents PR drinking
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Test episode




20 most confident detections




Summary

e First attempt to address human action in real movies

e Action detection/recognition seems possible under
hard realistic conditions (variations across views,
subjects, scenes, etc...)

e Separate learning of shape/motion information
results in a large improvement (overfitting?)

Future

e Need realistic data for 100’s of action classes:
-> (semi-) automatic action annotation from movie scripts
[M.Everingham, J.Sivic and A.Zisserman BMVCO0G6]

e Explicit handling of actions under multiple views
e Combining action classification with text



