

WP6 review presentation

- ♦ GATE ontology
- QuestIO Question-based Interface to Ontologies

Funded by: European Commission – 6th Framework Project Reference: IST-2004-026460

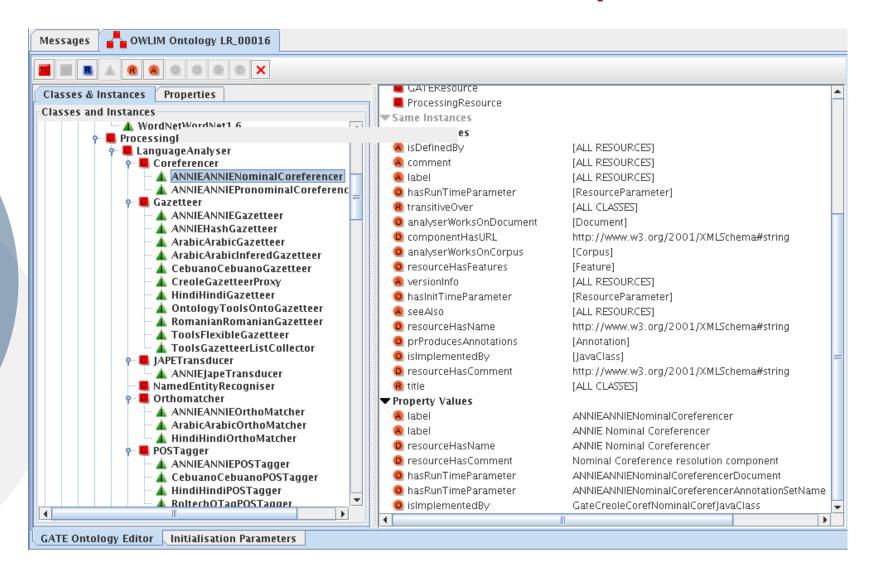
Enriched GATE ontology with instances

Kalina Bontcheva
Valentin Tablan
University of Sheffield
k.bontcheva@dcs.shef.ac.uk

Funded by: European Commission – 6th Framework Project Reference: IST-2004-026460

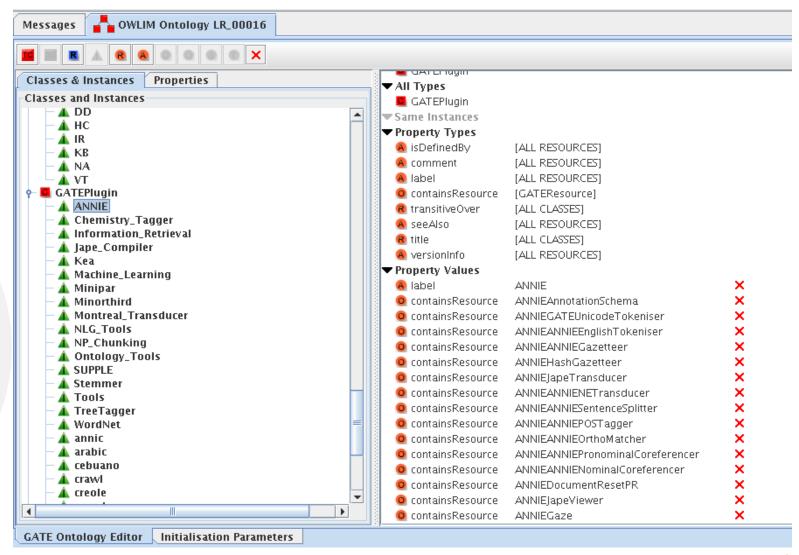
GATE Ontology – New/Changed Concepts

- Plugin describes GATE plugins, which are sets of Resources
 - ♦ Key property: containsResource
- SavaClass refers to the Java classes implementing the components
 - ♦ javaFullyQualifiedName
- Resources new properties
 - ♦ Has < Init/Run > TimeParameter
 - ♦resourceHasName, resourceHasComment
- ResourceParameter
 - parameterHasName, parameterHasDefaultValue


GATE knowledge base

GATE knowledge base comprises:

- 42 classes
- 23 object properties
- ♦ 594 instances



Resource Instance Example

ANNIE Plugin Instance

Automatic Ontology Population from XML Config Files

```
_ - ×
                                  creole.xml (/data/work/gate/plugins/ANNIE) - gedit
   Edit View Search Tools Documents Help
                            Undo Redo Cut Copy Paste Find Replace
New Open
creole.xml
                                java.lang.Boolean
                        </PARAMETER>
                        <ICON>ortho-matcher</ICON>
                </RESOURCE>
                <!-- creole.xml for the coreferencer -->
                <RESOURCE>
                       NAME>ANNIE Pronominal Coreferencer</NAME>
                        <CLASS>gate.creole.coref.Coreferencer</CLASS>
                        <COMMENT>
                                Pronominal Coreference resolution component
                                (http://gate.ac.uk/sale/tao/#sec:annie:pronom-coref)
                        </COMMENT>
                        <PARAMETER NAME="document" RUNTIME="true"
                                COMMENT="The document to be processed">
                                gate.Document
                        </PARAMETER>
                        <PARAMETER NAME="annotationSetName" RUNTIME="true"</pre>
                                COMMENT="The annotation set to be used for the generated annotations"
                                OPTIONAL="true">
                                java.lang.String
                        </PARAMETER>
                        <PARAMETER NAME="resolveIt" RUNTIME="true"
                                COMMENT="Whether or not to resolve it pronouns" DEFAULT="false"
                                OPTIONAL="true">
                                java.lang.Boolean
                        </PARAMETER>
                        <ICON>pronominal-coreferencer</ICON>
                </RESOURCE>
                <!-- creole.xml for the coreferencer -->
                <RESOURCE>
                                                                                               Ln 459, Col 25
```

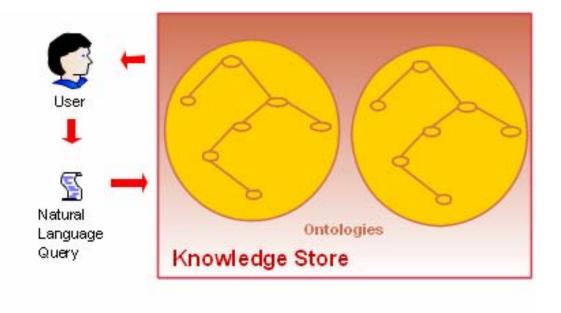

Wrap-up

- New version of GATE ontology now distributed
- Most classes and properties same as before
- Some small changes detailed above, needed to model the data from the plugins configuration files
- Once mapping established from XML elements to ontology classes and properties, conversion was straightforward => ontology populated automatically

QuestIO: a Question-based Interface to Ontologies

Danica Damljanović
Valentin Tablan
Kalina Boncheva
University of Sheffield
d.damljanovic@dcs.shef.ac.uk

Funded by: European Commission – 6th Framework Project Reference: IST-2004-026460


Content

- Objective and Motivation
- Problems and challenges
- Our Approach (how we do it?)
- Achievements (what we have done?)
- **♦** Evaluation
- ♦ What next?
- **Questions?**

Objective

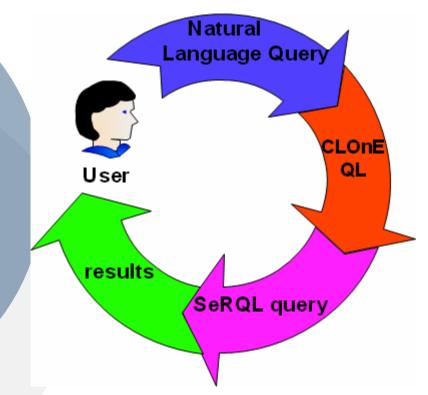
Developing a tool for querying the knowledge store using text-based Natural Language (NL) queries.

Motivation

- Downsides of existing query languages (e.g., SeRQL, SPARQL):
 - complex syntax,
 - not easy to learn,
 - writing queries is error-prone task,
 - requires understanding of Semantic Web technologies.

Does it make sense?

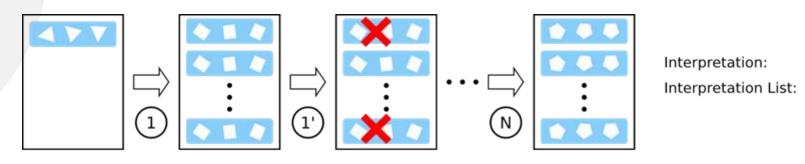
"Java Class for parameters for processing resources in ANNIC?"


```
select c0,"[inverseProperty]", p1, c2,"[inverseProperty]", p3,
   c4,"[inverseProperty]", p5, i6
from {c0} rdf:type { < http://gate.ac.uk/ns/gate-
ontology#JavaClass>}, {c2} p1 {c0}, {c2} rdf:type
   { < http://gate.ac.uk/ns/gate-
   ontology#ResourceParameter>}, {c4} p3 {c2}, {c4}
   rdf:type { < http://gate.ac.uk/ns/gate-
   ontology#ProcessingResource>}, {i6} p5 {c4}, {i6}
   rdf:type { < http://gate.ac.uk/ns/gate-
   ontology#GATEPlugin>}
where p1=http://gate.ac.uk/ns/gate-
   ontology#parameterHasType and
   p3=http://gate.ac.uk/ns/gate-
   ontology#hasRunTimeParameter and
   p5=http://gate.ac.uk/ns/gate-ontology#containsResource
   and i6=<http://gate.ac.uk/ns/gate-ontology#annic>
```

One year ago...

- A Controlled Language for Ontology Querying:
 - recognizing patterns in a text-based query and creating SeRQL queries accordingly;
- **\ointigetarrow** Limitations:
 - requires syntactically correct sentences;
 - cannot process concept-based queries such as 'accommodation Rome';
 - can process a limited set of queries.

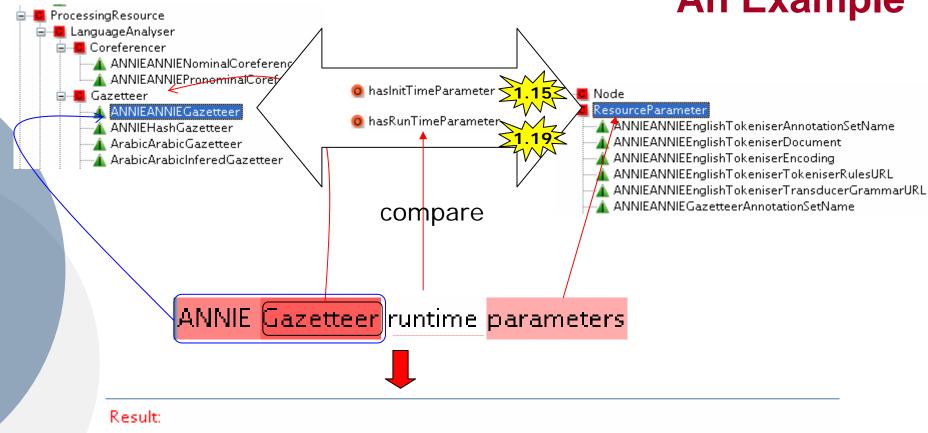
Challenges


- to enhance robustness;
- to accept queries of any length and form;
- to be portable and domain independent.

From questions to answers

The text query is transformed into a SeRQL query using a set of *Transformers*. The input and an output for a *Transformer* is an *Interpretation*:

- ♦ Interpretations are used as a container for information.
- Transformer represents an algorithm for converting a type of interpretation into another.



From questions to answers

- Producing ontology-aware annotations
- Filtering annotations
- Identifying relations between annotated concepts
- Scoring relations
- Creating SeRQL queries and showing results

An Example

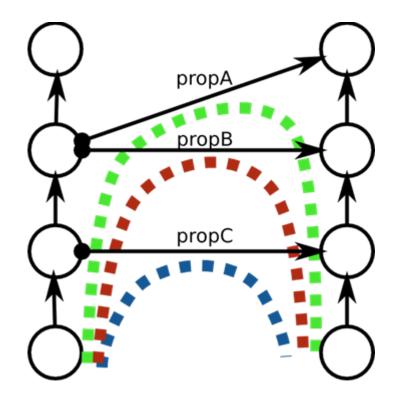

```
ANNIE Gazetteer --> hasRunTimeParameter --> document
```

ANNIE Gazetteer --> hasRunTimeParameter --> ANNIEANNIEGazetteerAnnotationSetName

ANNIE Gazetteer --> hasRunTimeParameter --> ANNIEANNIEGazetteerWholeWordsOnly

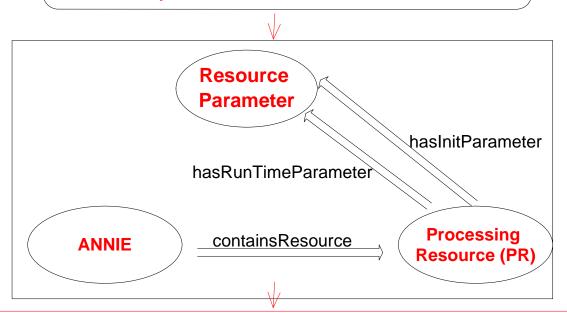
ANNIE Gazetteer --> hasRunTimeParameter --> longestMatchOnly

Scoring relations


We combine three types of scores:

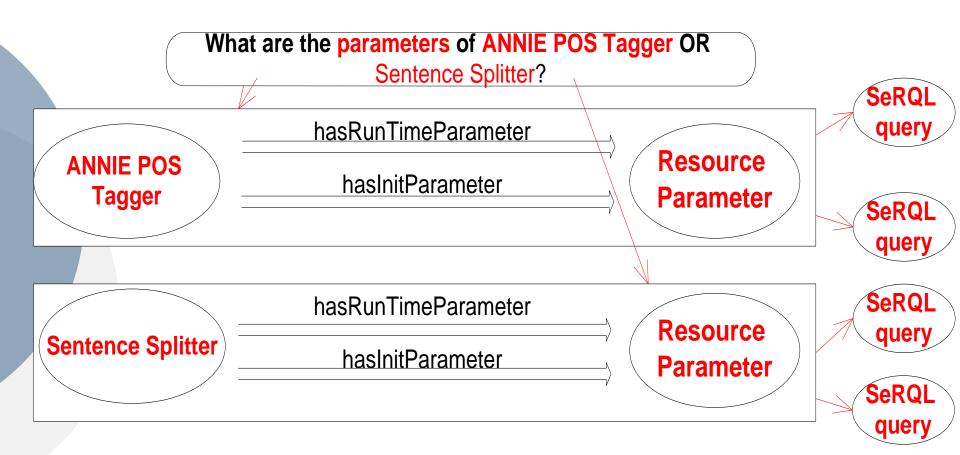
- similarity score using Levenshtein similarity metrics we compare input string from the user with the relevant ontology resource
- specificity score is based on the subproperty relation in the ontology definition.

Scoring relations (II)


distance score is
 inferring an implicit
 specificity of a
 property based on the
 level of the classes
 that are used as its
 domain and range.

Relative clauses

What are the parameters of PR that is included in ANNIE?



select y,p,x from {x} rdf:type {<http://gate.ac.uk/ns/gate-ontology#ResourceParameter>}, {y} rdf:type {<http://gate.ac.uk/ns/gate-ontology#ProcessingResource>},{y} <http://gate.ac.uk/ns/gate-ontology#hasInitTimeParameter> {x},{y} p {x},{z} <http://gate.ac.uk/ns/gate-ontology#containsResource> {y} where z=<http://gate.ac.uk/ns/gate-ontology#ANNIE>

select y,p,x from {x} rdf:type {<http://gate.ac.uk/ns/gate-ontology#ResourceParameter>}, {y} rdf:type {<http://gate.ac.uk/ns/gate-ontology#ProcessingResource>},{y} <http://gate.ac.uk/ns/gate-ontology#hasRunTimeParameter> {x},{y} p {x},{z} <http://gate.ac.uk/ns/gate-ontology#containsResource> {y} where z=<http://gate.ac.uk/ns/gate-ontology#ANNIE>

Grouping of elements

Our achievements

- Dynamically generating SeRQL queries.
- **Unlimited number of concepts in a query.**
- Partially supporting relative clauses:
 - ♦ What are the parameters of the PR that is included in ANNIE plug-in?
- Grouping identified concepts to support more complex queries:
 - ♦ Which PRs are included in annic AND annie?
 - What are the parameters of POS Tagger OR Sentence Splitter?
- Setting the environment for implementing user interaction:
 - ♦ Tracking transformations from text to the SeRQL query so that user can be easily returned to the stage where he can change/refine his query.

Evaluation

We evaluated:

- coverage and correctness
- scalability and portability

Evaluation on coverage and correctness

We manually collected 36 questions posted by GATE users to the project's mailing list in the past year, for example:

- Which PRs take ontologies as a parameter?
- Which plugin is the VP Chunker in?
- What is a processing resource?

Evaluation on coverage and correctness (2)

- 22 out of 36 questions were *answerable* (the answer was in the knowledge base):
- ♦ 12 correctly answered (54.5%)
- 6 with partially corrected answer
 (27.3%)
- system failed to create a SeRQL query or created a wrong one for 4 questions (18.2%)

Total score:

- ♦ 68% correctly answered
- ♦ 32% did not answer at all or did not answer correctly

Evaluation on scalability and portability

Sizes of the knowledge bases created based on:

- SATE ontology: http://gate.ac.uk/ns/gate-ontology
- Travel ontology: http://goodoldai.org.yu/ns/tgproton.owl

GATE Knowledge Base		
Classes	42	
Object Properties	23	
Instances	594	
Total size $(C + P + I)$	659	
Initialisation time	19 seconds	

Travel Knowledge Base		
Classes	318	
Object Properties	86	
Instances	2790	
Total size $(C + P + I)$	3194	
Initialisation time	109 seconds	

Evaluation on scalability and portability

Query execution times:

Query size (number of properties)	time	Number of results	Actual query	
GATE Knowledge Base				
1	0.148	15	"processing resources in ANNIE?"	
2	0.234	37	"parameters for processing resources in AN-NIE?"	
3	0.298	37	"Java Class for parameters for processing resources in ANNIE?"	
Travel Knowledge Base				
1	1.013	52	"countries in asia"	
2	2.030	52	"capitals of countries in asia"	
3	3.307	52	"capitals of countries in global regions in asia"	

What next?

- Using implemented transformations to employ user interaction:
 - When the system is not able to make decisions autonomously it will require additional input from the user.
- Improving the algorithms for generating SeRQL queries.
- Optimization of the tool initialization (scalability issues).
- More evaluation on scalability (with KIM).
- Evaluate its expressivity against that of SeRQL.
- Try technologies for soft matching and synonym retrieval, e.g., between hotel and accommodation.

Questions?

Thank you!

