Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search

Navin Goyal (Georgia Tech) Yury Lifshits (Caltech) Hinrich Schütze (Stuttgart University)

Web Search and Data Mining 2008 Stanford, February 11, 2008

Nearest Neighbors: an Example

Input: Set of objects Task: Preprocess it

Nearest Neighbors: an Example

Input: Set of objects Task: Preprocess it

Query: New object Task: Find the most similar one in the dataset

Nearest Neighbors: an Example

Input: Set of objects Task: Preprocess it

Query: New object Task: Find the most similar one in the dataset

Nearest Neighbors

From computational perspective almost all algorithmic problems in the Web represent some form of nearest neighbor problem:

Search space: object domain \mathbb{U} , similarity function σ Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$ Query: $q \in \mathbb{U}$ Task: find argmax $\sigma(p_i, q)$

Contribution

- Combinatorial framework: new approach to data mining problems that does not require triangle inequality
- New algorithms for nearest neighbor search
- Experiments
- Tutorial, website

Outline

2 Motivation

Similarity Search for the Web

- Recommendations
- Personalized news aggregation
- Ad targeting
- "Best match" search Resume, job, BF/GF, car, apartment
- Co-occurrence similarity Suggesting new search terms

Nearest Neighbors: Prior Work

Sphere Rectangle Tree Orchard's Algorithm k-d-B tree Geometric near-neighbor access tree Excluded middle vantage point forest mvp-tree Fixed-height fixed-queries tree AESA Vantage-point tree LAESA R*-tree Burkhard-Keller tree BBD tree Navigating Nets Voronoi tree Balanced aspect ratio tree Metric tree vp^s-tree M-tree Locality-Sensitive Hashing ss-tree R-tree Spatial approximation tree Multi-vantage point tree Bisector tree mb-tree Cover tree Hybrid tree Generalized hyperplane tree Slim tree Spill Tree Fixed queries tree X-tree k-d tree Balltree Ouadtree Octree Post-office tree

Challenge: Separation Effect

In theory:

Triangle inequality Doubling dimension is $o(\log n)$

Challenge: Separation Effect

In theory:

Triangle inequality Doubling dimension is $o(\log n)$

Typical web dataset has separation effect For almost all i, j: $1/2 \le d(p_i, p_j) \le 1$

Challenge: Separation Effect

In theory:

Triangle inequality Doubling dimension is $o(\log n)$

Typical web dataset has separation effect For almost all i, j: $1/2 \le d(p_i, p_j) \le 1$

Classic methods fail:

In general metric space exact problem is intractable Branch and bound algorithms visit every object Doubling dimension is at least $\log n/2$

2

Combinatorial Framework

Comparison Oracle

- Dataset *p*₁, . . . , *p*_n
- Objects and distance (or similarity) function are NOT given
- Instead, there is a comparison oracle answering queries of the form:

Who is closer to A: B or C?

Disorder Inequality

Sort all objects by their similarity to *p*:

Disorder Inequality

Sort all objects by their similarity to *p*:

Disorder Inequality

Sort all objects by their similarity to *p*:

 $\forall p, r, s: rank_r(s) \leq D(rank_p(r) + rank_p(s))$

Combinatorial Framework

Comparison oracle Who is closer to $A^{\cdot} B$ or C? Disorder inequality

 $rank_{r}(s) \leq D(rank_{p}(r) + rank_{p}(s))$

Combinatorial Framework: FAQ

- Disorder of a metric space? Disorder of ^k?
- In what cases disorder is relatively small?
- Experimental values of *D* for some practical datasets?
- Disorder constant vs. other concepts of intrinsic dimension?

Combinatorial Framework: Pro & Contra

Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information
- Sensitive to "local density" of a dataset

Combinatorial Framework: Pro & Contra

Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information
- Sensitive to "local density" of a dataset

Limitation: worst-case form of disorder inequality

Disorder vs. Others

- If expansion rate is c, disorder constant is at most c²
- Doubling dimension and disorder dimension are incomparable
- Disorder inequality implies combinatorial form of "doubling effect"

3 New Algorithms

Hierarchical greedy navigation:

Start at random city p1

- Start at random city p1
- Among all airlines choose the one going most closely to q, move there (say, to p₂)

- Start at random city p1
- Among all airlines choose the one going most closely to q, move there (say, to p₂)
- Among all railway routes from p₂ choose the one going most closely to q, move there (p₃)

- Start at random city p1
- Among all airlines choose the one going most closely to q, move there (say, to p₂)
- Among all railway routes from p₂ choose the one going most closely to q, move there (p₃)
- Among all bus routes from p₃ choose the one going most closely to q, move there (p₄)

- Start at random city p1
- Among all airlines choose the one going most closely to q, move there (say, to p₂)
- Among all railway routes from p₂ choose the one going most closely to q, move there (p₃)
- Among all bus routes from p₃ choose the one going most closely to q, move there (p₄)
- Repeat this log n times and return the final city

Hierarchical greedy navigation:

- Start at random city p1
- Among all airlines choose the one going most closely to q, move there (say, to p₂)
- Among all railway routes from p₂ choose the one going most closely to q, move there (p₃)
- Among all bus routes from p₃ choose the one going most closely to q, move there (p₄)
- Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to $\frac{n}{2^k}$ neighborhood

Ranwalk Algorithm

Preprocessing:

 For every point p in database we sort all other points by their similarity to p

Data structure: *n* lists of n - 1 points each.

Query processing:

Step 0: choose a random point p_0 in the database.

- From k = 1 to $k = \log n$ do Step k: Choose $D' := 3D(\log \log n + 1)$ random points from $\min(n, \frac{3Dn}{2^k})$ -neighborhood of p_{k-1} . Compute similarities of these points w.r.t. q and set p_k to be the most similar one.
- If $\operatorname{rank}_{p_{\log n}}(q) > D$ go to step 0, otherwise search the whole D^2 -neighborhood of $p_{\log n}$ and return the point most similar to q as the final answer.

Analysis of Ranwalk

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D:

 $\operatorname{rank}_{x}(y) \leq D(\operatorname{rank}_{z}(x) + \operatorname{rank}_{z}(y)).$

Then Ranwalk algorithm always answers nearest neighbor queries correctly

Resources:

- Preprocessing space: $O(n^2)$
- Preprocessing time: $O(n^2 \log n)$
- Expected query time: $\mathcal{O}(D \log n \log \log n + D^2)$

Variation: Arwalk

Arwalk: moving all random choices to preprocessing

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D

Then for any probability of error δ Arwalk algorithm answers nearest neighbor query within the following constraints:

- Preprocessing space: $O(nD \log n(\log \log n + \log 1/\delta))$
- Preprocessing time: $\mathcal{O}(n^2 \log n)$
- Query time: $\mathcal{O}(D \log n (\log \log n + \log 1/\delta))$

Experiment

Reuters-RCV1 corpus:

- 📵 Fix range <mark>R</mark>
- Choose random $a, b \in [1..R]$
- Oboose random p ∈ S
- Take r s.t. $rank_p(r) = a$
- **5** Take *s* s.t. $rank_r(s) = b$
- Let $c = rank_p(s)$
 - Return ^c/_{a+b}

3

Directions for Further Research

Recent Results

- Yury Lifshits and Shengyu Zhang Similarity Search via Combinatorial Nets
- Better nearest neighbors:
 - Deterministic
 - Preprocessing *poly*(*D*)*n* log² *n* time
 - Price: search time increases to $D^4 \log n$
- Combinatorial algorithms for other problems:
 - Near duplicates
 - Navigation in a small world
 - Clustering

Future of Combinatorial Framework

- Other problems in combinatorial framework:
 - Low-distortion embeddings
 - Closest pairs
 - Community discovery
 - Linear arrangement
 - Distance labelling
 - Dimensionality reduction
- What if disorder inequality has exceptions, but holds in average?
- Insertions, deletions, changing metric
- Metric regularizations
- Experiments & implementation

Sponsored Links

http://yury.name

http://simsearch.yury.name

Tutorial, bibliography, people, links, open problems

📔 Yury Lifshits and Shengyu Zhang

Similarity Search via Combinatorial Nets
http://yury.name/papers/lifshits2008similarity.pdf

- Navin Goyal, Yury Lifshits, Hinrich Schütze Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search http://yury.name/papers/goyal2008disorder.pdf
 - Benjamin Hoffmann, Yury Lifshits, Dirk Novotka Maximal Intersection Queries in Randomized Graph Models http://yury.name/papers/hoffmann2007maximal.pdf

Summary

- Combinatorial framework: comparison oracle + disorder inequality
- New algorithms:

Random walk with nearly *D* log *n* steps

• Further work:

Implementing combinatorial algorithms Disorder in average

Summary

- Combinatorial framework: comparison oracle + disorder inequality
- New algorithms:

Random walk with nearly *D*log *n* steps

• Further work:

Implementing combinatorial algorithms Disorder in average

Thanks for your attention! Questions?