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Nearest Neighbors: an Example
Input: Set of objects

Task: Preprocess it

Query: New object

Task: Find the most

similar one in the dataset

Most similar
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Nearest Neighbors

From computational perspective almost all
algorithmic problems in the Web represent
some form of nearest neighbor problem:

Search space: object domain U, similarity
function σ

Input: database S = {p1, . . . ,pn} ⊆ U
Query: q ∈ U
Task: find argmax σ(pi,q)
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Contribution

Combinatorial framework: new approach
to data mining problems that does not
require triangle inequality

New algorithms for nearest neighbor
search

Experiments

Tutorial, website
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Similarity Search for the Web

Recommendations

Personalized news aggregation

Ad targeting

“Best match” search
Resume, job, BF/GF, car, apartment

Co-occurrence similarity
Suggesting new search terms

7 /28



Nearest Neighbors: Prior Work
Sphere Rectangle Tree Orchard’s Algorithm k-d-B tree

Geometric near-neighbor access tree Excluded
middle vantage point forest mvp-tree Fixed-height

fixed-queries tree AESA Vantage-point
tree LAESA R∗-tree Burkhard-Keller tree BBD tree

Navigating Nets Voronoi tree Balanced aspect ratio

tree Metric tree vps-tree M-tree
Locality-Sensitive Hashing SS-tree

R-tree Spatial approximation tree
Multi-vantage point tree Bisector tree mb-tree Cover

tree Hybrid tree Generalized hyperplane tree Slim tree

Spill Tree Fixed queries tree X-tree k-d tree Balltree

Quadtree Octree Post-office tree
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Challenge: Separation Effect

In theory:
Triangle inequality
Doubling dimension is o(logn)

Typical web dataset has separation effect

For almost all i, j : 1/2 ≤ d(pi,pj) ≤ 1

Classic methods fail:
In general metric space exact problem is intractable
Branch and bound algorithms visit every object
Doubling dimension is at least logn/2
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Comparison Oracle

Dataset p1, . . . ,pn

Objects and distance (or similarity)
function are NOT given

Instead, there is a comparison oracle
answering queries of the form:

Who is closer to A: B or C?
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Disorder Inequality

Sort all objects by their similarity to p:

p r s

rankp(r)

rankp(s)

Then by similarity to r:

r s

rankr(s)

Dataset has disorder D if
∀p, r, s : rankr(s) ≤ D(rankp(r) + rankp(s))
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Combinatorial Framework

=

Comparison oracle
Who is closer to A: B or C?

+

Disorder inequality
rankr(s) ≤ D(rankp(r) + rankp(s))
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Combinatorial Framework: FAQ

Disorder of a metric space? Disorder of
Rk?

In what cases disorder is relatively small?

Experimental values of D for some
practical datasets?

Disorder constant vs. other concepts of
intrinsic dimension?
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Combinatorial Framework: Pro & Contra

Advantages:

Does not require triangle inequality for distances

Applicable to any data model and any similarity
function

Require only comparative training information

Sensitive to “local density” of a dataset

Limitation: worst-case form of disorder inequality
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Disorder vs. Others

If expansion rate is c, disorder constant is
at most c2

Doubling dimension and disorder
dimension are incomparable

Disorder inequality implies combinatorial
form of “doubling effect”
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New Algorithms
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Ranwalk Informally (1/2)

q
p1

p2

p3

p4
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Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most
closely to q, move there (say, to p2)

3 Among all railway routes from p2 choose the one
going most closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going
most closely to q, move there (p4)

5 Repeat this logn times and return the final city

Transport system: for level k choose c
random arcs to n

2k
neighborhood
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Ranwalk Algorithm
Preprocessing:

For every point p in database we sort all other
points by their similarity to p
Data structure: n lists of n− 1 points each.

Query processing:
1 Step 0: choose a random point p0 in the database.
2 From k = 1 to k = logn do Step k: Choose

D′ := 3D(log logn+ 1) random points from
min(n, 3Dn

2k
)-neighborhood of pk−1. Compute

similarities of these points w.r.t. q and set pk to be
the most similar one.

3 If rankplogn(q) > D go to step 0, otherwise search
the whole D2-neighborhood of plogn and return the
point most similar to q as the final answer.
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Analysis of Ranwalk
Assume that database points together with
query point S ∪ {q} satisfy disorder inequality
with constant D:

rankx(y) ≤ D(rankz(x) + rankz(y)).

Then Ranwalk algorithm always answers
nearest neighbor queries correctly
Resources:

Preprocessing space: O(n2)

Preprocessing time: O(n2 logn)

Expected query time: O(D logn log logn+D2)
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Variation: Arwalk
Arwalk: moving all random choices to
preprocessing

Assume that database points together with
query point S ∪ {q} satisfy disorder inequality
with constant D

Then for any probability of error δ Arwalk
algorithm answers nearest neighbor query
within the following constraints:

Preprocessing space: O(nD logn(log logn+ log1/δ))
Preprocessing time: O(n2 logn)

Query time: O(D logn(log logn+ log1/δ))
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Experiment
Reuters-RCV1 corpus:

1 Fix range R

2 Choose random
a,b ∈ [1..R]

3 Choose random p ∈ S
4 Take r s.t. rankp(r) = a

5 Take s s.t. rankr(s) = b

6 Let c = rankp(s)

7 Return c
a+b
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Directions for Further Research
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Recent Results
Yury Lifshits and Shengyu Zhang

Similarity Search via Combinatorial Nets

Better nearest neighbors:

Deterministic

Preprocessing poly(D)n log2n time

Price: search time increases to D4 logn

Combinatorial algorithms for other
problems:

Near duplicates

Navigation in a small world

Clustering
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Future of Combinatorial Framework

Other problems in combinatorial framework:

Low-distortion embeddings
Closest pairs
Community discovery
Linear arrangement
Distance labelling
Dimensionality reduction

What if disorder inequality has exceptions,
but holds in average?

Insertions, deletions, changing metric

Metric regularizations

Experiments & implementation
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Sponsored Links
http://yury.name

http://simsearch.yury.name
Tutorial, bibliography, people, links, open problems

Yury Lifshits and Shengyu Zhang

Similarity Search via Combinatorial Nets

http://yury.name/papers/lifshits2008similarity.pdf

Navin Goyal, Yury Lifshits, Hinrich Schütze

Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search

http://yury.name/papers/goyal2008disorder.pdf

Benjamin Hoffmann, Yury Lifshits, Dirk Novotka

Maximal Intersection Queries in Randomized Graph Models

http://yury.name/papers/hoffmann2007maximal.pdf
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Summary

Combinatorial framework:
comparison oracle + disorder inequality

New algorithms:
Random walk with nearly D logn steps

Further work:
Implementing combinatorial algorithms
Disorder in average

Thanks for your attention!
Questions?
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