Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search

Navin Goyal (Georgia Tech) Yury Lifshits (Caltech)

 Hinrich Schütze (Stuttgart University)Web Search and Data Mining 2008 Stanford, February 11, 2008

Nearest Neighbors: an Example

Input: Set of objects
Task: Preprocess it

Nearest Neighbors: an Example

Input: Set of objects
Task: Preprocess it

Query: New object
Task: Find the most
 similar one in the dataset

Nearest Neighbors: an Example

Input: Set of objects
Task: Preprocess it

Most

Task: Find the most similar one in the dataset

Nearest Neighbors

From computational perspective almost all algorithmic problems in the Web represent some form of nearest neighbor problem:

Search space: object domain \mathbb{U}, similarity function σ

Input: database $S=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{U}$
Query: $q \in \mathbb{U}$
Task: find $\operatorname{argmax} \sigma\left(p_{i}, q\right)$

Contribution

- Combinatorial framework: new approach to data mining problems that does not require triangle inequality
- New algorithms for nearest neighbor search
- Experiments
- Tutorial, website

Outline

Motivation

Combinatorial Framework

New Algorithms

Directions for Further Research

Motivation

Similarity Search for the Web

- Recommendations
- Personalized news aggregation
- Ad targeting
- "Best match" search

Resume, job, BF/GF, car, apartment

- Co-occurrence similarity

Suggesting new search terms

Nearest Neighbors: Prior Work

 sphere Rectangle Tree Orchard's Algorithm k-d-B tree Geometric near-neighbor access tree Excluded middle vantage point forest mvp-tree Fixed-height fixed-queries tree AESA Vantage-point tree LAESA R*-tree Burkhard-keller tree bвd tree Navigating Nets voronoi tree Balanced aspect ratio tree Metric tree vps.tree M-tree Locality-Sensitive Hashing ss-tree R-tree Spatial approximation tree Multi-vantage point tree Bisectortree mb-tree Cover tree Hybrid tree Generalized hyperplane tree slim tree Spill Tree Fixed queries tree x -tree k -d tree Balltree Quadtree Octree post-office tree
Challenge: Separation Effect

In theory:

Triangle inequality
Doubling dimension is $o(\log n)$

Challenge: Separation Effect

In theory:

Triangle inequality
Doubling dimension is $o(\log n)$

Typical web dataset has separation effect
For almost all $i, j: \quad 1 / 2 \leq d\left(p_{i}, p_{j}\right) \leq 1$

Challenge: Separation Effect

In theory:

Triangle inequality
Doubling dimension is $o(\log n)$

Typical web dataset has separation effect

$$
\text { For almost all } i, j: \quad 1 / 2 \leq d\left(p_{i}, p_{j}\right) \leq 1
$$

Classic methods fail:
In general metric space exact problem is intractable Branch and bound algorithms visit every object Doubling dimension is at least $\log n / 2$

Combinatorial Framework

Comparison Oracle

- Dataset p_{1}, \ldots, p_{n}
- Objects and distance (or similarity) function are NOT given
- Instead, there is a comparison oracle answering queries of the form:

Who is closer to $A: B$ or C ?

Disorder Inequality

Sort all objects by their similarity to p :

Disorder Inequality

Sort all objects by their similarity to p :

Then by similarity to r :

Disorder Inequality

Sort all objects by their similarity to p :

Then by similarity to r :

Dataset has disorder D if
$\forall p, r, s: \quad \operatorname{rank}_{r}(s) \leq D\left(\operatorname{rank}_{p}(r)+\operatorname{rank}_{p}(s)\right)$

Combinatorial Framework

Comparison oracle Who is closer to A : B or C ?

Disorder inequality
$\operatorname{rank}_{r}(s) \leq D\left(\operatorname{rank}_{p}(r)+\operatorname{rank}_{p}(s)\right)$

Combinatorial Framework: FAQ

- Disorder of a metric space? Disorder of \mathbb{R}^{k} ?
- In what cases disorder is relatively small?
- Experimental values of D for some practical datasets?
- Disorder constant vs. other concepts of intrinsic dimension?

Combinatorial Framework: Pro \& Contra

Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information
- Sensitive to "local density" of a dataset

Combinatorial Framework: Pro \& Contra

Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information
- Sensitive to "local density" of a dataset

Limitation: worst-case form of disorder inequality

Disorder vs. Others

- If expansion rate is c, disorder constant is at most c^{2}
- Doubling dimension and disorder dimension are incomparable
- Disorder inequality implies combinatorial form of "doubling effect"

3

New Algorithms

Ranwalk Informally (1/2)

q

Ranwalk Informally (1/2)

q

Ranwalk Informally (1/2)

Ranwalk Informally (1/2)

Ranwalk Informally (1/2)

Ranwalk Informally (1/2)

Ranwalk Informally (2/2) Hierarchical greedy navigation:

(1) Start at random city p_{1}

Ranwalk Informally (2/2) Hierarchical greedy navigation:

(1) Start at random city p_{1}
(2) Among all airlines choose the one going most closely to q, move there (say, to p_{2})

Ranwalk Informally (2/2) Hierarchical greedy navigation:

(1) Start at random city p_{1}

2 Among all airlines choose the one going most closely to q, move there (say, to p_{2})
(3) Among all railway routes from p_{2} choose the one going most closely to q, move there (p_{3})

Ranwalk Informally (2/2) Hierarchical greedy navigation:

(1) Start at random city p_{1}

2 Among all airlines choose the one going most closely to q, move there (say, to p_{2})
(3) Among all railway routes from p_{2} choose the one going most closely to q, move there (p_{3})
(4) Among all bus routes from p_{3} choose the one going most closely to q, move there (p_{4})

Ranwalk Informally (2/2) Hierarchical greedy navigation:

(2) Start at random city p_{1}

2 Among all airlines choose the one going most closely to q, move there (say, to p_{2})
(3) Among all railway routes from p_{2} choose the one going most closely to q, move there (p_{3})
(4) Among all bus routes from p_{3} choose the one going most closely to q, move there (p_{4})
(5) Repeat this $\log n$ times and return the final city

Ranwalk Informally (2/2) Hierarchical greedy navigation:

(1) Start at random city p_{1}

2 Among all airlines choose the one going most closely to q, move there (say, to p_{2})
(3) Among all railway routes from p_{2} choose the one going most closely to q, move there (p_{3})
(4) Among all bus routes from p_{3} choose the one going most closely to q, move there (p_{4})
(5) Repeat this $\log n$ times and return the final city

Transport system: for level k choose c random arcs to $\frac{n}{2^{k}}$ neighborhood

Ranwalk Algorithm

Preprocessing:

- For every point p in database we sort all other points by their similarity to p
Data structure: n lists of $n-1$ points each.

Query processing:

(1) Step 0: choose a random point p_{0} in the database.
(2) From $k=1$ to $k=\log n$ do Step k : Choose $D^{\prime}:=3 D(\log \log n+1)$ random points from $\min \left(n, \frac{3 D n}{2^{k}}\right)$-neighborhood of p_{k-1}. Compute similarities of these points w.r.t. q and set p_{k} to be the most similar one.
(3) If $\operatorname{rank}_{p_{\operatorname{logn}}}(q)>D$ go to step 0 , otherwise search the whole D^{2}-neighborhood of $p_{\log n}$ and return the point most similar to q as the final answer.

Analysis of Ranwalk

Assume that database points together with query point $S \cup\{q\}$ satisfy disorder inequality with constant D :
$\operatorname{rank}_{x}(y) \leq D\left(\operatorname{rank}_{z}(x)+\operatorname{rank}_{z}(y)\right)$.
Then Ranwalk algorithm always answers nearest neighbor queries correctly
Resources:

- Preprocessing space: $\mathcal{O}\left(n^{2}\right)$
- Preprocessing time: $\mathcal{O}\left(n^{2} \log n\right)$
- Expected query time: $\mathcal{O}\left(D \log n \log \log n+D^{2}\right)$

Variation: Arwalk

Arwalk: moving all random choices to preprocessing

Assume that database points together with query point $S \cup\{q\}$ satisfy disorder inequality with constant D

Then for any probability of error δ Arwalk algorithm answers nearest neighbor query within the following constraints:

- Preprocessing space: $\mathcal{O}(n D \log n(\log \log n+\log 1 / \delta))$
- Preprocessing time: $\mathcal{O}\left(n^{2} \log n\right)$
- Query time: $\mathcal{O}(D \log n(\log \log n+\log 1 / \delta))$

Experiment

Reuters-RCV1 corpus:
(1) Fix range R
(2) Choose random $a, b \in[1 . . R]$
(3) Choose random $p \in S$
(4) Take r s.t. $\operatorname{rank}_{p}(r)=a$
(5) Take s s.t. $\operatorname{rank}_{r}(s)=b$
(6) Let $c=\operatorname{rank}_{p}(s)$
(ㄱ) Return $\frac{c}{a+b}$

3

Directions for Further Research

Recent Results

T- Yury Lifshits and Shengyu Zhang
Similarity Search via Combinatorial Nets

- Better nearest neighbors:
- Deterministic
- Preprocessing poly(D) $n \log ^{2} n$ time
- Price: search time increases to $D^{4} \log n$
- Combinatorial algorithms for other problems:
- Near duplicates
- Navigation in a small world
- Clustering

Future of Combinatorial Framework

- Other problems in combinatorial framework:
- Low-distortion embeddings
- Closest pairs
- Community discovery
- Linear arrangement
- Distance labelling
- Dimensionality reduction
- What if disorder inequality has exceptions, but holds in average?
- Insertions, deletions, changing metric
- Metric regularizations
- Experiments \& implementation

Snonsoreo tinks

http://yury.name

http://simsearch.yury.name

Tutorial, bibliography, people, links, open problems

Yury Lifshits and Shengyu Zhang
Similarity Search via Combinatorial Nets
http://yury.name/papers/lifshits2008similarity.pdf
Navin Goyal, Yury Lifshits, Hinrich Schütze
Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search http://yury.name/papers/goyal2008disorder.pdfBenjamin Hoffmann, Yury Lifshits, Dirk Novotka
Maximal Intersection Queries in Randomized Graph Models http://yury.name/papers/hoffmann2007maximal.pdf

Summary

- Combinatorial framework:
comparison oracle + disorder inequality
- New algorithms:

Random walk with nearly $D \log n$ steps

- Further work:

Implementing combinatorial algorithms
Disorder in average

Summary

- Combinatorial framework:
comparison oracle + disorder inequality
- New algorithms:

Random walk with nearly $D \log n$ steps

- Further work:

Implementing combinatorial algorithms
Disorder in average

Thanks for your attention! Questions?

