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Search Result Presentation

List form or hierarchical form
Hierarchical form preferred by many users

[Chen and Dumais 2000]
[Hearst 2006]
[Etzioni et al. : Grouper; WWW ’99]

Question
How do we automatically categorize search 
results from a list form into a hierarchical form?

Based on classification rather than clustering
Deep vs. Shallow 
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Motivation

Search Result 
Categorization
Help user browsing 

User preferred

Large‐Scale 
Hierarchical 

Categorization
Detailed Categorization

Users prefer categorization
but too shallow so far

Data Mining can help, but needs to be 
efficient and effective
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Search Result 
Categorization
Help user browsing 

User preferred

Large‐Scale 
Hierarchical 

Categorization
Detailed Categorization

Hierarchical 
Categorization 
of Search Result
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Query=“Saturn”
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Deep Classifier: Detailed 
Steps

1. Identify a large online 
taxonomy T for categorization
1. Open Directory Project, 

Yahoo directories, etc.
2. Given a query Q, obtain a set 

of candidate categories C(Q)
3. Prune T(Q) using C(Q)

1. The result is a deep and 
narrow taxonomy T(Q), 
where all leaf nodes are 
candidates

4. Build a classifier into the leaf 
nodes in T(Q)

5. Classify each search result in 
S(Q) into T(Q)

6. Present T(Q) to the user

Properties:
The search results S(Q) are 
classified into different 
categories C(Q) for different 
queries Q
A classifier is trained online 
for each incoming query

Is this feasible?
The classifier should be both 
trained efficiently and 
accurate
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Research Question 1: How to 
build a classifier online?

Given a query, we can 
use the search 
functions of various 
online taxonomies to 
find the candidate 
categories

ODP already does this
To build a classifier 
into these candidates, 
we must collect 
training data for each 
category

How?
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Question: How to build a 
classifier in real time?

Flat StrategyFlat Strategy

Hierarchical StrategyHierarchical Strategy

Ancestor‐Assistant
Strategy

Ancestor‐Assistant
Strategy
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Flat Strategy for Training a 
Classifier

Pros: Simple

Cons: 
Multi-class!
Data Scarcity

21.6 docs per 
class node
Easy to overfit!
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Hierarchical Strategy [related 
works…] 

Classify top-down, level-by-level

Problem:
Slow
Few docs under each node
Top level docs too general
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Ancestor-assistant Strategy
To build a classifier for results of query 
Q, let Ci be a category of T(Q)

T(Q) is the pruned taxonomy tree of Q
For each candidate Ci,

Collect training documents
from Ci,

Father of Ci, Cousins of Ci
Grandfather of Ci, Uncles of Ci
…
Until an ancestor is reached, which 
includes a competitor candidate Cj as 
descendent

Let the union of these documents be D
Label D by category Ci
Build a classifier for Ci using D and 
using the flat strategy 
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Find the highest ancestor that 
does not include another 
candidate node as descendent

Borrow data from 
ancestors, and their 
descendents

Now 661.2 (vs. 21.6) per 
class

Ancestor‐Assistant
Strategy

Ancestor‐Assistant
Strategy
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Deep Classifier: choice of 
classifier

Flat StrategyFlat Strategy

Hierarchical StrategyHierarchical Strategy

Ancestor‐Assistant
Strategy

Ancestor‐Assistant
Strategy

Naïve Bayesian Classifier
‐ fast

Standard NBC

Discriminative NBC
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Next Research Question: How 
to choose a classifier

A classifier is trained for each query
Thus, efficiency is a concern!

Using SVM or other time-consuming classifiers would 
not be feasible
Using Naïve Bayesian Classifiers (NBC) is a good 
choice

We can calculate the conditional probability table 
beforehand
Thus only need to multiply some factors in real time

∏
=

∝
N

j
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1

)|Pr(*)Pr()|Pr(
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Online Classification: choices

Two Problems with NBC: 
Probability of each category in ODP is fixed
Probability of each category in search result varies w/ Q

Pr(Ci) not the same between training (ODP) and test data 
(top-100 search results)

Thus basic machine learning assumption violated, and we may 
need transfer learning, or…

Count(terms)/Count(categories) may be too small 
when Count(categories) too large (>100), 
The contribution of each term is tiny, thus not discriminative 
enough!

We wish to make the contribution of each term 
much larger than in traditional NBC

∏
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∝
N
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Making NBC Fast and 
Accurate

Two Assumptions:
Let Pr(Ci)=1/n, where n is # of classes, for all Ci
Pr(Ci|Doc) proportional to Pr(Ci|word j), which is 
proportional to # of categories per word 

This is much more discriminative than Pr(word j|Ci)

∏
=

∝
N

j
jii wordCDocC

1

)|Pr()|Pr(
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Time Complexity

When testing a search result, only words occur in the snippets are 
considered. 

The  time complexity for testing is O(n * logN + n * m + K), 

n is the length of the snippets, 
m is the number of category candidates
N is the size of the whole term vocabulary

The first item denotes the time to convert snippets into word ID, 
the second item denotes the time to classify, 
K is the time for memory swapping 
However, the computational efficiency part needs to be explored 
much further in our future works
Instead, in our experiments, we focused on accuracy only
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Experiments 
We first collected 1000 popular queries from a search 
engine, and computed the distribution of their results 
among the top-level categories in ODP 
~ 94.7% of the queries are distributed over less than six 
categories, 

of which about 74.2% of queries are over three or less 
categories. 
The two most widely distributed 

games (in 14 top-level categories) and books (in 12 top-level 
categories).

This indicates that 
top-level categories may be too coarse for many queries
deep categories are necessary
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Experimental Hypotheses

The Ancestor-assistant strategy may 
outperform the hierarchical and the flat 
strategies
The discriminative naive Bayesian 
classifier may outperform the 
traditional NBC
The discriminative naive Bayesian 
classifier is much faster than SVM
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Evaluation Data

Data Sets for 
Evaluation

Data Set I
Search results from 
simulated search 
engine
Randomly picking 100 
from query log.

Data Set II
Case study: 
ambiguous queries.
Real search results 
from Google. 1, 297, 222 157, 927

Pages Categories
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Different Training Data 
Selection Strategies
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(Each is averaged over all queries in the data set.)

Different Classifiers
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Data II:
flat – Flat Strategy

hie– Hierarchical Strategy
aa – Ancestor-Assitant Strategy

Results on Queries 
as function of training data selection 
strategy
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Conclusions

Objective
Applying Hierarchical Classification to 
Search Result Categorization

Problem Solution

Large Hierarchies Pruned for each query

Few Training Data Ancestor-assistant Strategy

Efficiency for Online 
Application

Faster and more effective 
Discriminative Naïve 
Bayesian classifier
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