
1

Deep Classifier:
Automatically Categorizing Search
Results into Large-Scale Hierarchies

Presented by Qiang Yang
Hong Kong Univ of Sci and Tech.

Dikan Xing, Guirong Xue, Yong Yu

Shanghai Jiao-tong University
Qiang Yang

Hong Kong University of Science
and Technology

2

Search Result Presentation

List form or hierarchical form
Hierarchical form preferred by many users

[Chen and Dumais 2000]
[Hearst 2006]
[Etzioni et al. : Grouper; WWW ’99]

Question
How do we automatically categorize search
results from a list form into a hierarchical form?

Based on classification rather than clustering
Deep vs. Shallow

3

Motivation

Search Result
Categorization
Help user browsing

User preferred

Large‐Scale
Hierarchical

Categorization
Detailed Categorization

Users prefer categorization
but too shallow so far

Data Mining can help, but needs to be
efficient and effective

4

Search Result
Categorization
Help user browsing

User preferred

Large‐Scale
Hierarchical

Categorization
Detailed Categorization

Hierarchical
Categorization
of Search Result

5

Query=“Saturn”

6

Deep Classifier: Detailed
Steps

1. Identify a large online
taxonomy T for categorization
1. Open Directory Project,

Yahoo directories, etc.
2. Given a query Q, obtain a set

of candidate categories C(Q)
3. Prune T(Q) using C(Q)

1. The result is a deep and
narrow taxonomy T(Q),
where all leaf nodes are
candidates

4. Build a classifier into the leaf
nodes in T(Q)

5. Classify each search result in
S(Q) into T(Q)

6. Present T(Q) to the user

Properties:
The search results S(Q) are
classified into different
categories C(Q) for different
queries Q
A classifier is trained online
for each incoming query

Is this feasible?
The classifier should be both
trained efficiently and
accurate

7

Research Question 1: How to
build a classifier online?

Given a query, we can
use the search
functions of various
online taxonomies to
find the candidate
categories

ODP already does this
To build a classifier
into these candidates,
we must collect
training data for each
category

How?

8

Question: How to build a
classifier in real time?

Flat StrategyFlat Strategy

Hierarchical StrategyHierarchical Strategy

Ancestor‐Assistant
Strategy

Ancestor‐Assistant
Strategy

9

Flat Strategy for Training a
Classifier

Pros: Simple

Cons:
Multi-class!
Data Scarcity

21.6 docs per
class node
Easy to overfit!

10

Hierarchical Strategy [related
works…]

Classify top-down, level-by-level

Problem:
Slow
Few docs under each node
Top level docs too general

11

Ancestor-assistant Strategy
To build a classifier for results of query
Q, let Ci be a category of T(Q)

T(Q) is the pruned taxonomy tree of Q
For each candidate Ci,

Collect training documents
from Ci,

Father of Ci, Cousins of Ci
Grandfather of Ci, Uncles of Ci
…
Until an ancestor is reached, which
includes a competitor candidate Cj as
descendent

Let the union of these documents be D
Label D by category Ci
Build a classifier for Ci using D and
using the flat strategy

12

Find the highest ancestor that
does not include another
candidate node as descendent

Borrow data from
ancestors, and their
descendents

Now 661.2 (vs. 21.6) per
class

Ancestor‐Assistant
Strategy

Ancestor‐Assistant
Strategy

13

Deep Classifier: choice of
classifier

Flat StrategyFlat Strategy

Hierarchical StrategyHierarchical Strategy

Ancestor‐Assistant
Strategy

Ancestor‐Assistant
Strategy

Naïve Bayesian Classifier
‐ fast

Standard NBC

Discriminative NBC

14

Next Research Question: How
to choose a classifier

A classifier is trained for each query
Thus, efficiency is a concern!

Using SVM or other time-consuming classifiers would
not be feasible
Using Naïve Bayesian Classifiers (NBC) is a good
choice

We can calculate the conditional probability table
beforehand
Thus only need to multiply some factors in real time

∏
=

∝
N

j
ijii CwordCDocC

1

)|Pr(*)Pr()|Pr(

15

Online Classification: choices

Two Problems with NBC:
Probability of each category in ODP is fixed
Probability of each category in search result varies w/ Q

Pr(Ci) not the same between training (ODP) and test data
(top-100 search results)

Thus basic machine learning assumption violated, and we may
need transfer learning, or…

Count(terms)/Count(categories) may be too small
when Count(categories) too large (>100),
The contribution of each term is tiny, thus not discriminative
enough!

We wish to make the contribution of each term
much larger than in traditional NBC

∏
=

∝
N

j
ijii CwordCDocC

1

)|Pr(*)Pr()|Pr(

16

Making NBC Fast and
Accurate

Two Assumptions:
Let Pr(Ci)=1/n, where n is # of classes, for all Ci
Pr(Ci|Doc) proportional to Pr(Ci|word j), which is
proportional to # of categories per word

This is much more discriminative than Pr(word j|Ci)

∏
=

∝
N

j
jii wordCDocC

1

)|Pr()|Pr(

17

Time Complexity

When testing a search result, only words occur in the snippets are
considered.

The time complexity for testing is O(n * logN + n * m + K),

n is the length of the snippets,
m is the number of category candidates
N is the size of the whole term vocabulary

The first item denotes the time to convert snippets into word ID,
the second item denotes the time to classify,
K is the time for memory swapping
However, the computational efficiency part needs to be explored
much further in our future works
Instead, in our experiments, we focused on accuracy only

18

Experiments
We first collected 1000 popular queries from a search
engine, and computed the distribution of their results
among the top-level categories in ODP
~ 94.7% of the queries are distributed over less than six
categories,

of which about 74.2% of queries are over three or less
categories.
The two most widely distributed

games (in 14 top-level categories) and books (in 12 top-level
categories).

This indicates that
top-level categories may be too coarse for many queries
deep categories are necessary

19

Experimental Hypotheses

The Ancestor-assistant strategy may
outperform the hierarchical and the flat
strategies
The discriminative naive Bayesian
classifier may outperform the
traditional NBC
The discriminative naive Bayesian
classifier is much faster than SVM

20

Evaluation Data

Data Sets for
Evaluation

Data Set I
Search results from
simulated search
engine
Randomly picking 100
from query log.

Data Set II
Case study:
ambiguous queries.
Real search results
from Google. 1, 297, 222 157, 927

Pages Categories

21

Different Training Data
Selection Strategies

22

(Each is averaged over all queries in the data set.)

Different Classifiers

23

Data II:
flat – Flat Strategy

hie– Hierarchical Strategy
aa – Ancestor-Assitant Strategy

Results on Queries
as function of training data selection
strategy

24

Conclusions

Objective
Applying Hierarchical Classification to
Search Result Categorization

Problem Solution

Large Hierarchies Pruned for each query

Few Training Data Ancestor-assistant Strategy

Efficiency for Online
Application

Faster and more effective
Discriminative Naïve
Bayesian classifier

	Deep Classifier:�Automatically Categorizing Search�Results into Large-Scale Hierarchies
	Search Result Presentation
	Motivation
	Query=“Saturn”
	Deep Classifier: Detailed Steps
	Research Question 1: How to build a classifier online?
	Question: How to build a classifier in real time?
	Flat Strategy for Training a Classifier
	Hierarchical Strategy [related works…]
	Ancestor-assistant Strategy
	Deep Classifier: choice of classifier
	Next Research Question: How to choose a classifier
	Online Classification: choices
	Making NBC Fast and Accurate
	Time Complexity
	Experiments
	Experimental Hypotheses
	Evaluation Data
	Different Training Data Selection Strategies
	Data II:
	Conclusions

