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Search Result Presentation

List form or hierarchical form

Hierarchical form preferred by many users
o [Chen and Dumais 2000]

o [Hearst 2006]

o [Etzioni et al. : Grouper; WWW '99]

Question
o How do we automatically categorize search
results from a list form into a hierarchical form?

Based on classification rather than clustering
Deep vs. Shallow




Motivation

Search Result
Categorization

Help user browsing

User preferred

Users prefer categorization
but too shallow so far

Large-Scale
Hierarchical
Categorization

Detailed Categorization

Data Mining can help, but needs to be

efficient and effective
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Deep Classifier: Detailed

Steps

Identify a large online
taxonomy T for categorization

1. Open Directory Project,
Yahoo directories, etc.

Given a query Q, obtain a set
of candidate categories C(Q)

Prune T(Q) using C(Q)

1. Theresultis a deep and
narrow taxonomy T(Q),
where all leaf nodes are
candidates

Build a classifier into the leaf

nodes in T(Q)

Classify each search result in

S(Q) into T(Q)
Present T(Q) to the user

Properties:

o  The search results S(Q) are
classified into different
categories C(Q) for different
gueries Q

o A classifier is trained online
for each incoming query

Is this feasible?
o  The classifier should be both

trained efficiently and
accurate



Research Question 1: How to
build a classifier online?

use the search
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Question: How to build a
classifier in real time?

— Quen e Flat Strategy
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Flat Strategy for Training a
Classifier

= Pros: Simple

m Cons:

o Multi-class!

o Data Scarcity

= 21.6 docs per
class node

= Easy to overfit!
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Hierarchical Strategy [related
Works...]
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o Slow

o Few docs under each node
o Top level docs too general 0



Ancestor-assistant Strateay

To build a classifier for results of query
Q, let Ci be a category of T(Q)

o  T(Q) is the pruned taxonomy tree of Q
For each candidate Ci,

o  Collect training documents
from Ci,
Father of Ci, Cousins of Ci
Grandfather of Ci, Uncles of Ci

Until an ancestor is reached, which
includes a competitor candidate Cj as
descendent

Let the union of these documents be D
Label D by category Ci

Build a classifier for Ci using D and
using the flat strategy
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Ancestor-Assistant
Strategy
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Borrow data from
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descendents

Now 661.2 (vs. 21.6) per
class 12
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classifier

|-Deep Classifier: choice of

Query
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Next Research Question: How
to choose a classifier

A classifier is trained for each query

Thus, efficiency is a concern!

Using SVM or other time-consuming classifiers would
not be feasible

Using Naive Bayesian Classifiers (NBC) is a good
choice N
Pr(C; | Doc) o Pr(C;)*] | Pr(word; | C;)
j=1

We can calculate the conditional probability table
beforehand

Thus only need to multiply some factors in real time
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Online Classification: choices

Pr(C. | Doc) o Pr(C, )*H Pr(word ; | C;)

j=1
Two Problems with NBC:

o Probability of each category in ODP is fixed

o Probability of each category in search result varies w/ Q

Pr(Ci) not the same between training (ODP) and test data
(top-100 search results)

O  Thus basic machine learning assumption violated, and we may
need transfer learning, or...

o Count(terms)/Count(categories) may be too small
when Count(categories) too large (>100),

The contribution of each term is tiny, thus not discriminative
enough!

We wish to make the contribution of each term
much larger than in traditional NBC

15



Making NBC Fast and
[Accurate

Two Assumptions:
Let Pr(Ci)=1/n, where n is # of classes, for all Ci

Pr(Ci|Doc) proportional to Pr(Ci|word j), which is
proportional to # of categories per word
This is much more discriminative than Pr(word j|Ci)

N
Pr(C; | Doc) oc | | Pr(C; |word )
j=1
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Time Complexity

When testing a search result, only words occur in the snippets are
considered.

The time complexity for testing is O(n * logN + n * m + K),

o nisthe length of the snippets,
o mis the number of category candidates
o N s the size of the whole term vocabulary

The first item denotes the time to convert snippets into word ID,
the second item denotes the time to classify,
K is the time for memory swapping

However, the computational efficiency part needs to be explored
much further in our future works

Instead, in our experiments, we focused on accuracy only
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Experiments

We first collected 1000 popular queries from a search
engine, and computed the distribution of their results
among the top-level categories in ODP

~ 94.7% of the queries are distributed over less than six
categories,

o of which about 74.2% of queries are over three or less
categories.

o  The two most widely distributed

games (in 14 top-level categories) and books (in 12 top-level
categories).

This indicates that

o top-level categories may be too coarse for many queries
o deep categories are necessary

18



[Experimental Hypotheses

The Ancestor-assistant strategy may
outperform the hierarchical and the flat
strategies

The discriminative naive Bayesian
classifier may outperform the
traditional NBC

The discriminative naive Bayesian
classifier is much faster than SVM



Evaluation Data

m Data Sets for

25

Evaluation DAL 19 million
20 million
O Data Set I :é;miﬂion

=15
m Search results from

simulated search
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engine 5 t
= Randomly picking 100 | o —=—""Y
from query log. 23 4 s 67 89 1002
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= Case study:

ambiguous queries.

m Real search results
from Google. 1, 297, 222 157, 927
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Different Training Data
Selection Strategies

B Hierarchical

| Flat
U Ancestor-Assistant

Micro-F1

1k

Macro-Precion Macro-Eecall Macro-F1
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Different Classifiers

(Each is averaged over all queries in the data set.)

0.5 W Standard NB
O Discriminative NB

Micro-F1 Macro-Precion Macro-Eecall Macro-F1
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Results on Queries
as function of training data selection

strategy
, Micro-F1 Macro-Precision Macro-Recall Macro-F1

Query flat hie aa flat hie aa flat hie aa flat hie aa
ajax 0.99 0.86 0.99 0.92 0.52 0.85 0.67 0.62 0.67 0.64 0.37 0.64
apple 0.77 0.21 0.72 0.74 0.28 0.68 0.33 0.26 0.52 0.29 0.19 0.50
dell 0.67 0.62 0.64 0.20 0.35 0.39 0.23 0.30 0.54 0.18 0.30 0.33
jaguar 0.61 0.41 0.94 0.59 0.51 0.83 0.30 0.53 0.85 0.26 0.45 0.83
java 0.93 0.29 0.83 0.48 0.34 0.62 0.37 0.20 0.58 0.32 0.20 0.49
saturn 0.71 0.41 0.98 0.60 0.69 0.76 0.43 0.63 0.98 0.29 0.50 0.79
subway 0.91 0.86 0.94 0.70 0.44 0.71 0.69 0.54 0.88 0.67 0.47 0.78
trec 0.60 0.52 0.80 0.34 0.34 0.61 0.54 0.54 0.46 0.38 0.38 0.44
ups 0.72 0.81 0.81 0.32 0.31 0.33 0.36 0.72 0.72 0.24 0.41 0.43
(average) 0.78 0.55 0.85 0.56 0.42 0.64 0.41 0.48 0.69 0.35 0.36 0.58
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Conclusions

= Objective

o Applying Hierarchical Classification to
Search Result Categorization

Large Hierarchies Pruned for each query

Few Training Data Ancestor-assistant Strategy

Efficiency for Online Faster and more effective
Application Discriminative Naive
Bayesian classifier

24
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