Opinion Spam and Analysis

Nitin Jindal and Bing Liu
Department of Computer Science
University of Illinois at Chicago

Motivation

Opinions from reviews

- Used by both consumers and manufacturers
- Significant impact on product sales

Existing Work

- Focus on extracting and summarizing opinions from reviews
- Little knowledge about characteristics of reviews and behavior of reviewers
- No study on trustworthiness of opinions
- No quality control
 spam reviews

Review Spam

- Fake/untruthful review to promote or damage a product's reputation
- Different from finding usefulness of reviews

- Increasing mention in blogosphere
- Articles in leading news media
 - CNN, NYTimess
- Increasing number of customers vary of fake reviews (biased reviews, paid reviews)

by leading PR firm Burson-Marsteller

Different from other spam types

- Web Spam (Link spam, Content spam)
 In reviews
 - not much links
 - adding irrelevant words of little help
- Email Spam (Unsolicited commercial advertisements)
 - In reviews, advertisements not as frequent as in emails
 - relatively easy to detect

Overview

- Opinion Data and Analysis
 - Reviews, reviewers and products
 - Feedbacks, ratings

- Review Spam
 - Categorization of Review Spam
 - Analysis and Detection

Amazon Data

- June 2006
 - 5.8mil reviews, 1.2mil products and 2.1mil reviewers.
- A review has 8 parts
 - <Product ID> <Reviewer ID> <Rating> <Date> <Review
 Title> <Review Body> <Number of Helpful feedbacks>
 <Number of Feedbacks> <Number of Helpful Feedbacks>
- Industry manufactured products "mProducts" e.g. electronics, computers, accessories, etc
 - 228K reviews, 36K products and 165K reviewers.

Log-log plot

Reviews,
Reviewers and
Products

Fig. 2 reviews and products

Fig. 1 reviews and reviewers

Fig. 3 reviews and feedbacks

Observations

Reviews & Reviewers

- 68% of reviewers wrote only one review
- Only 8% of the reviewers wrote at least 5 reviews

Reviews & Products

- 50% of products have only one review
- Only 19% of the products have at least 5 reviews

Reviews & Feedbacks

Closely follows power law

Review Ratings

Rating of 5

60% reviews

45% of products

59% of members

Reviews and Feedbacks

1st review – 80% positive feedbacks

10th review – 70% positive feedbacks

Duplicate Reviews

Two reviews which have similar content are called duplicates

Members who duplicated reviews

- 10% of reviewers with more than one review (~650K) wrote duplicate reviews
- 40% of the times exact duplicates

Types of Duplicate Reviews

Type of duplicates

- 1. Same userid, same product
- 2. Different userid, same product
- 3. Same userid, different product
- 4. Different userid, different product

		Num Reviews	
_	Spam Review Type	(mProducts)	
1	Different userids on the same product	3067 (104)	
2	Same userid on different products	50869 (4270)	
3	Different userids on different products	1383 (114)	
	Total	55319 (4488)	

Categorization of Review Spam

Type 1 (Untruthful Opinions)

Ex:

Type 2 (Reviews on Brands Only)

Ex: "I don't trust HP and never bought anything from them"

- Type 3 (Non-reviews)
 - Advertisements

Ex: "Detailed product specs: 802.11g, IMR compliant, ..." "...buy this product at: compuplus.com"

Other non-reviews

Ex: "What port is it for"

"The other review is too funny"

"Go Eagles go"

Spam Detection

- Type 2 and Type 3 spam reviews
 - Supervised learning

- Type 1 spam reviews
 - Manual labeling very difficult
 - Propose to use duplicate and near-duplicate reviews

Detecting Type 2 & Type 3 Spam Reviews

- Binary classification
 - Logistic Regression
 - Probabilistic estimates
 - Practical applications, like give weights to each review, rank them, etc
- Poor performance on other models
 - naïve Bayes, SVM and Decision Trees

Features Construction

- Three types
 - Review centric, reviewer centric and product centric
- Total 32 features
 - Rating related features
 - Average rating, standard deviation, etc
 - Feedback related features
 - Percentage of positive feedbacks, total feedbacks, etc
 - Textual Features
 - Opinion words [Hu, Liu '04], numerals, capitals, cosine similarity, etc
 - Other features
 - Length and position of review
 - Sales rank, price, etc

Experimental Results

- Evaluation criteria
 - Area Under Curve (AUC)
 - 10-fold cross validation

Table 3. AUC values for different types of spam

Spam Type	Num	AUC	AUC – text	AUC – w/o
	reviews		features only	feedbacks
Types 2 & 3	470	98.7%	90%	98%
Type 2 only	221	98.5%	88%	98%
Type 3 only	249	99.0%	92%	98%

- High AUC -> Easy to detect
- Equally well on type 2 and type 3 spam
- text features alone not sufficient
- Feedbacks unhelpful (feedback spam)

Type 1 Spam Reviews

Hype spam – promote one's own product
 Defaming spam – defame one's competitors product

Table 4. Spam reviews vs. product quality

	Positive spam review	Negative spam review
Good quality product	1	2 \
Bad quality product	3	4
Average quality product	5	6

Harmful Regions

Very hard to detect manually

Predictive Power of Duplicates

- Representative of all kinds of spam
- Only 3% duplicates accidental
- Duplicates as positive examples, rest of the reviews as negative examples

Table 5. AUC values on duplicate spam reviews.

Features used	AUC
All features	78%
Only review features	75%
Only reviewer features	72.5%
Without feedback features	77%
Only text features	63%

- good predictive power
- How to check if it can detect type 1 reviews? (outlier reviews)

Outlier Reviews

- Reviews which deviate from average product rating
- Necessary (but not sufficient) condition for harmful spam reviews
- Predicting outlier reviews
 - Run logistic regression model using duplicate reviews (without rating related features)
 - Lift curve analysis

Lift Curve for outlier reviews

Biased reviewer -> all good or bad reviews on products of a brand

- -ve deviation reviews more likely to be spams
 - Biased reviews most likely
- +ve deviation reviews least likely to be spams except,
 - average reviews on bad products
 - Biased reviewers

"If model able to predicts outlier reviews, then with some degree of confidence we can say that it will predict harmful spam reviews too"

Other Interesting Outlier Reviews

- Only reviews
- Reviews from top ranked members
- Reviews with different feedbacks
- Reviews on products with different sales ranks

Only Reviews

- 46% of reviewed products have only one review
- Only reviews have high lift curve

Reviews from Top-Ranked Reviewers

- Reviews by top ranked reviewers given higher probabilities of spam
 - Top ranked members write larger number reviews
 - Deviate a lot from product rating, write a lot of only reviews

Reviews with different levels of feedbacks

- Random distribution
 - Spam reviews can get good feedbacks

Reviews of products with varied sales ranks

- Product sales rank
 - Important feature
- High sales rank low levels of spam
- Spam activities linked to low selling products

Conclusions

- Review Spam and Detection
- Categorization into three types
- Type 2 and 3 easy to detect
- Type 1 difficult to label manually
 - Proposed to use duplicate reviews for detecting type 1 spam
 - Predictive power on outlier reviews
 - Analyze other interesting outlier reviews

Questions?