Expectation Consistent Approximate Inference

Ole Winther

Informatics and Mathematical Modelling
Technical University of Denmark
DK-2800 Lyngby, Denmark
owi@imm.dtu.dk

In collaboration with Manfred Opper
ISIS
School of Electronics and Computer Science University of Southampton SO17 1BJ, United Kingdom

Overview

- Expectation Consistent (EC) free energy dual formulation
- Models examples
- Primal formulation
- Algorithmics
- Simulations and comparisons
- Conclusion and outlook

Expectation Consistent (EC) free energy dual formulation

Calculate partition function

$$
Z=\int d \mathrm{x} f(\mathrm{x})=\int d \mathrm{x} f_{1}(\mathrm{x}) f_{2}(\mathrm{x})
$$

Problem: Z intractable - integral not analytical and/or summation exponential in number of variables N.

Introduce tractable distribution $q(\mathrm{x})$

$$
q(\mathrm{x})=\frac{1}{Z_{q}\left(\boldsymbol{\lambda}_{q}\right)} f_{1}(\mathrm{x}) \exp \left(\boldsymbol{\lambda}_{q}^{T} \mathbf{g}(\mathrm{x})\right)
$$

Z_{q} can be calculated in polynomial time.

$$
\begin{aligned}
Z & =Z_{q} \frac{Z}{Z_{q}}=Z_{q} \frac{\int d \mathbf{x} f_{2}(\mathbf{x}) f_{1}(\mathrm{x}) \exp \left(\left(\boldsymbol{\lambda}_{q}-\boldsymbol{\lambda}_{q}\right)^{T} \mathbf{g}(\mathbf{x})\right)}{\int d \mathbf{x} f_{1}(\mathbf{x}) \exp \boldsymbol{\lambda}_{q}^{T} \mathbf{g}(\mathbf{x})} \\
& =Z_{q}\left\langle f_{2}(\mathbf{x}) \exp \left(-\boldsymbol{\lambda}_{q}^{T} \mathbf{g}(\mathbf{x})\right)\right\rangle_{q}
\end{aligned}
$$

Free energy

Free energy exact:

$$
-\ln Z=-\ln Z_{q}-\ln \left\langle f_{2}(\mathrm{x}) \exp \left(-\lambda_{q}^{T} \mathbf{g}(\mathrm{x})\right)\right\rangle_{q}
$$

Variational approximation use Jensen: $\ln \langle f(\mathbf{x})\rangle \geq\langle\ln f(\mathbf{x})\rangle$

$$
-\ln Z \leq-\ln Z_{q}-\left\langle\ln f_{2}(\mathrm{x})\right\rangle_{q}+\lambda_{q}^{T}\langle\mathrm{~g}(\mathrm{x})\rangle_{q}
$$

Find λ_{q} by minimizing the upper bound.
Better to average over $f_{2}(\mathbf{x}) \exp \left(-\boldsymbol{\lambda}_{q}^{T} \mathbf{g}(\mathrm{x})\right)$ approximately.

Retain more averaging in that way.

Expectation consistent approximation

Define $g(x)$ such that both

$$
\begin{aligned}
q(\mathbf{x}) & =\frac{1}{Z_{q}\left(\boldsymbol{\lambda}_{q}\right)} f_{1}(\mathbf{x}) \exp \left(\boldsymbol{\lambda}_{q}^{T} \mathbf{g}(\mathbf{x})\right) \\
r(\mathbf{x}) & =\frac{1}{Z_{r}\left(\boldsymbol{\lambda}_{r}\right)} f_{2}(\mathbf{x}) \exp \left(\boldsymbol{\lambda}_{r}^{T} \mathbf{g}(\mathbf{x})\right)
\end{aligned}
$$

are tractable.

Excludes some models tractable in the variational approach (without further approximations).

Example I - the Ising model

Binary variables - spins $-x_{i}= \pm 1$ with pairwise interactions

$$
\begin{aligned}
f_{1}(\mathbf{x}) & =\prod_{i} \Psi_{i}\left(x_{i}\right) \\
\psi_{i}\left(x_{i}\right) & =\left[\delta\left(x_{i}+1\right)+\delta\left(x_{i}-1\right)\right] e^{\theta_{i} x_{i}} \\
f_{2}(x) & =\exp \left(\sum_{i>j} x_{i} J_{i j} x_{j}\right)=\exp \left(\frac{1}{2} \mathbf{x}^{T} \mathbf{J} \mathbf{x}\right)
\end{aligned}
$$

E.g. set $g(\mathrm{x})$ to first and second order

$$
\mathrm{g}(\mathbf{x})=\left(x_{1},-\frac{x_{1}^{2}}{2}, x_{2},-\frac{x_{2}^{2}}{2}, \ldots, x_{N},-\frac{x_{N}^{2}}{2}\right)
$$

$q(\mathrm{x})$ - a factorized binary distribution
$r(\mathrm{x})$ - multivariate Gaussian.

Interpretation of $\mathrm{g}(\mathrm{x})$ will be clear shortly.

Example II - Gaussian processes

Supervised learning: Inputs $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ and targets t_{1}, \ldots, t_{N}.

Gaussian process prior over functions $\mathbf{y}=\left(y\left(\mathbf{x}_{1}\right), \ldots, y\left(\mathbf{x}_{N}\right)\right)$:

$$
p(\mathbf{y})=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \mathbf{C}}} \exp \left(-\frac{1}{2} \mathbf{y}^{T} \mathbf{C}^{-1} \mathbf{y}\right)
$$

Likelihood, observation model: $p(t \mid y(\mathrm{x}))$, e.g. noise-free classification

$$
\begin{gathered}
p(t \mid y(\mathbf{x}))=\Theta(t y(\mathbf{x})) \\
Z=\int d \mathbf{y} \prod_{i} p\left(t_{i} \mid y\left(\mathbf{x}_{i}\right)\right) p(\mathbf{y})
\end{gathered}
$$

Same structure as ex. I - factorized and multivariate Gaussian (Opper\&Winther,2000; Minka 2001).

Expectation consistent (EC) free energy dual formulation

Exchange average over $q(\mathbf{x})$ with average over simpler distribution $s(\mathrm{x})$.

$$
\begin{aligned}
& s(\mathrm{x})=\frac{1}{Z_{s}\left(\boldsymbol{\lambda}_{s}\right)} \exp \left(\boldsymbol{\lambda}_{s}^{T} \mathbf{g}(\mathrm{x})\right) \\
&-\ln Z^{\mathrm{EC}}=-\ln Z_{q}-\ln \left\langle f_{2}(\mathrm{x}) \exp \left(-\boldsymbol{\lambda}_{q}^{T} \mathbf{g}(\mathbf{x})\right)\right\rangle_{s} \\
&=-\ln \int d \mathbf{x} f_{1}(\mathbf{x}) \exp \left(\boldsymbol{\lambda}_{q}^{T} \mathbf{g}(\mathbf{x})\right) \\
&-\ln \int d \mathbf{x} f_{2}(\mathbf{x}) \exp \left(\left(\boldsymbol{\lambda}_{s}-\boldsymbol{\lambda}_{q}\right)^{T} \mathbf{g}(\mathbf{x})\right) \\
&+\ln \int d \mathbf{x}\left(\boldsymbol{\lambda}_{s}^{T} \mathbf{g}(\mathbf{x})\right)
\end{aligned}
$$

Determining the parameters

Expectation consistency:

$$
\begin{aligned}
& \frac{\partial \ln Z^{\mathrm{EC}}}{\partial \boldsymbol{\lambda}_{q}}=0 \quad: \quad\langle\mathrm{g}(\mathrm{x})\rangle_{q}=\langle\mathrm{g}(\mathrm{x})\rangle_{r} \\
& \frac{\partial \ln Z^{\mathrm{EC}}}{\partial \boldsymbol{\lambda}_{s}}=0 \quad: \quad\langle\mathrm{g}(\mathrm{x})\rangle_{r}=\langle\mathrm{g}(\mathrm{x})\rangle_{s}
\end{aligned}
$$

where

$$
\begin{aligned}
q(\mathbf{x}) & =\frac{1}{Z_{q}\left(\boldsymbol{\lambda}_{q}\right)} f_{1}(\mathbf{x}) \exp \left(\boldsymbol{\lambda}_{q}^{T} \mathbf{g}(\mathbf{x})\right) \\
r(\mathbf{x}) & =\frac{1}{Z_{r}\left(\boldsymbol{\lambda}_{r}\right)} f_{2}(\mathbf{x}) \exp \left(\boldsymbol{\lambda}_{r}^{T} \mathbf{g}(\mathbf{x})\right) \quad \text { with } \quad \boldsymbol{\lambda}_{r}=\boldsymbol{\lambda}_{s}-\boldsymbol{\lambda}_{q} \\
s(\mathbf{x}) & =\frac{1}{Z_{r}\left(\boldsymbol{\lambda}_{s}\right)} \exp \left(\boldsymbol{\lambda}_{s}^{T} \mathbf{g}(\mathbf{x})\right)
\end{aligned}
$$

Sort of justification for factorized + Gaussian moments

So far just a framework! Justification needed!
The marginal distributions for $\mathrm{g}(\mathbf{x})=\left(x_{1},-\frac{x_{1}^{2}}{2}, \ldots, x_{N},-\frac{x_{N}^{2}}{2}\right)$ and $\boldsymbol{\lambda}=\left(\gamma_{1}, \wedge_{1}, \ldots, \gamma_{N}, \wedge_{N}\right)$

$$
q(\mathbf{x})=\prod_{i} q_{i}\left(x_{i}\right) \quad q_{i}\left(x_{i}\right) \propto \Psi_{i}\left(x_{i}\right) \exp \left(\gamma_{q, i} x_{i}-\wedge_{q, i} x_{i}^{2}\right)
$$

Lesson from cavity method: When each variable interacts with many variables and the interaction strengths are of the same order then the influence of the other variables can be well approximated by a Gaussian (cavity) field.

How large depends upon interaction strength. Other complications such as non-ergodicity (RSB).

Non-trivial estimates in EC

- Marginal distributions $q\left(x_{i}\right)$ (factorized moments)

$$
\begin{aligned}
& q(\mathbf{x}) \propto \prod_{i} \Psi_{i}\left(x_{i}\right) \exp \left(\gamma_{q}^{T} \mathbf{x}-\mathbf{x}^{T} \boldsymbol{\Lambda}_{q} \mathbf{x} / 2\right) \\
& q\left(x_{i}\right) \propto \Psi_{i}\left(x_{i}\right) \exp \left(\gamma_{q, i} x_{i}-x_{i}^{2} \wedge_{q, i} / 2\right)
\end{aligned}
$$

- Correlations $r(\mathbf{x})$ global Gaussian approximation

$$
r(\mathbf{x}) \propto \exp \left(\gamma_{r}^{T} \mathbf{x}-\mathbf{x}^{T}\left(\boldsymbol{\Lambda}_{r}-\mathbf{J}\right) \mathbf{x} / 2\right)
$$

Covariance $C\left(x_{i}, x_{j}\right)=\left\langle x_{i} x_{j}\right\rangle_{r(\mathrm{x})}-\left\langle x_{i}\right\rangle_{r(\mathrm{x})}\left\langle x_{j}\right\rangle_{r(\mathrm{x})}=\left[\left(\boldsymbol{\Lambda}_{r}-\mathbf{J}\right)^{-1}\right]_{i j}$.

- The free energy $-\ln Z^{\mathrm{EC}} \approx-\ln Z$. Z is the marginal likelihood (or evidence) of the model.
- Supervised learning, Predictive distribution and leave-one-out (Opper \& Winther, 2000).

Is the saddlepoint a maximum or a minimum?

Partition function $Z=\int d \mathbf{x} f(\mathbf{x}) \exp \left(\boldsymbol{\lambda}^{T} \mathbf{g}(\mathbf{x})\right)$ is convex in $\boldsymbol{\lambda}$:

$$
\mathbf{H}=\frac{\partial^{2} \ln Z}{\partial \boldsymbol{\lambda}^{T} \boldsymbol{\lambda}}=\left\langle\mathbf{g}(\mathrm{x}) \mathbf{g}(\mathrm{x})^{T}\right\rangle-\langle\mathbf{g}(\mathbf{x})\rangle\left\langle\mathbf{g}(\mathbf{x})^{T}\right\rangle
$$

EC free energy is a non-convex combination of convex functions.

$$
\mathbf{H}^{\mathrm{EC}}=-\left(\begin{array}{cc}
\mathbf{H}_{q}+\mathbf{H}_{r} & -\mathbf{H}_{r} \\
-\mathbf{H}_{r} & \mathbf{H}_{r}-\mathbf{H}_{s}
\end{array}\right)
$$

Last minus signs complicates the numerics. Focus on numerics from now on!

The EC free energy in the primal representation

Gibbs free energy definition:

$$
G(\boldsymbol{\mu})=\max _{\boldsymbol{\lambda}}\left\{-\ln Z(\boldsymbol{\lambda})+\boldsymbol{\lambda}^{T} \boldsymbol{\mu}\right\}
$$

for generalized moments $\boldsymbol{\mu}=\langle\mathbf{g}(\mathbf{x})\rangle=\frac{\partial \ln Z(\boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}}$.
EC primal

$$
\begin{aligned}
G^{\mathrm{EC}}(\boldsymbol{\mu})= & G_{q}(\boldsymbol{\mu})+G_{r}(\boldsymbol{\mu})-G_{s}(\boldsymbol{\mu}) \\
= & \max _{\boldsymbol{\lambda}_{q}, \boldsymbol{\lambda}_{r} \boldsymbol{\lambda}_{s}}\left\{-\ln Z_{q}\left(\boldsymbol{\lambda}_{q}\right)-\ln Z_{r}\left(\boldsymbol{\lambda}_{r}\right)+\ln Z_{s}\left(\boldsymbol{\lambda}_{s}\right)\right. \\
& \left.\quad+\boldsymbol{\mu}^{T}\left(\boldsymbol{\lambda}_{q}+\boldsymbol{\lambda}_{r}-\boldsymbol{\lambda}_{s}\right)\right\} \\
-\ln Z^{\mathrm{EC}}= & \min _{\boldsymbol{\mu}} G^{\mathrm{EC}}(\boldsymbol{\mu})
\end{aligned}
$$

Dual from $\min _{\mu} G^{\mathrm{EC}}(\boldsymbol{\mu}): \boldsymbol{\lambda}_{q}+\boldsymbol{\lambda}_{r}-\boldsymbol{\lambda}_{s}=0$ to eliminate $\boldsymbol{\lambda}_{r}$.

Guaranteed convergent double-loop approach

A Gibbs free energy is convex in $\boldsymbol{\mu}$ (proof omitted).
G^{EC} is a non-convex combination of convex functions.

Complicated optimization problem!
(Slow) solution: Minimize a series of convex upper bounds to $G^{\mathrm{EC}}(\boldsymbol{\mu})$.

Update bound to be tight in minimizer of current bound $\boldsymbol{\mu}=\boldsymbol{\mu}^{*}$.

Double loop details

Outer loop: bound the concave term $-G_{s}(\boldsymbol{\mu})$ by

$$
-G_{s}(\boldsymbol{\mu}) \geq-G_{s}\left(\boldsymbol{\mu}^{*}\right)-\frac{\partial G_{s}\left(\boldsymbol{\mu}^{*}\right)}{\partial \boldsymbol{\mu}^{T}}\left(\boldsymbol{\mu}-\boldsymbol{\mu}^{*}\right)=-\left(\boldsymbol{\lambda}_{s}^{*}\right)^{T}\left(\boldsymbol{\mu}-\boldsymbol{\mu}^{*}\right)
$$

$\lambda_{s}^{*}=\lambda_{s}\left(\mu^{*}\right)$
Eliminate $\boldsymbol{\lambda}_{r}$ from $\min _{\boldsymbol{\mu}} G^{\mathrm{EC} \text {, ubound }}(\boldsymbol{\mu}): \boldsymbol{\lambda}_{q}+\boldsymbol{\lambda}_{r}-\boldsymbol{\lambda}_{s}^{*}=0$

Inner loop: Solve for $\boldsymbol{\lambda}_{q}$:

$$
\max _{\boldsymbol{\lambda}_{q}}\left\{-\ln Z_{q}\left(\boldsymbol{\lambda}_{q}\right)-\ln Z_{r}\left(\boldsymbol{\lambda}_{s}^{*}-\boldsymbol{\lambda}_{q}\right)\right\}:\langle\mathbf{g}(\mathbf{x})\rangle_{q}=\langle\mathbf{g}(\mathbf{x})\rangle_{r}
$$

After convergence update $\boldsymbol{\mu}^{*}=\langle\mathbf{g}(\mathbf{x})\rangle_{q}$

Expectation propagation (EP) style scheme

Aim: Expectation consistency between $q(\mathbf{x}), r(\mathrm{x})$ and $s(\mathbf{x})$ with

$$
\begin{aligned}
q(\mathrm{x}) & =\frac{1}{Z_{q}\left(\boldsymbol{\lambda}_{q}\right)} f_{1}(\mathrm{x}) \exp \left(\boldsymbol{\lambda}_{q}^{T} \mathbf{g}(\mathbf{x})\right) \propto \prod_{i}\left\{\psi_{i}\left(x_{i}\right) \exp \left(\boldsymbol{\lambda}_{q, i}^{T} \mathbf{g}_{i}\left(\mathbf{x}_{i}\right)\right)\right\} \\
r(\mathrm{x}) & =\frac{1}{Z_{r}\left(\boldsymbol{\lambda}_{r}\right)} f_{2}(\mathrm{x}) \exp \left(\boldsymbol{\lambda}_{r}^{T} \mathbf{g}(\mathbf{x})\right) \quad \text { with } \quad \boldsymbol{\lambda}_{r}=\boldsymbol{\lambda}_{s}-\boldsymbol{\lambda}_{q} \\
s(\mathrm{x}) & =\frac{1}{Z_{r}\left(\boldsymbol{\lambda}_{s}\right)} \exp \left(\boldsymbol{\lambda}_{s}^{T} \mathbf{g}(\mathrm{x})\right)
\end{aligned}
$$

EP style sequential scheme: Define approximate factors $\tilde{\psi}_{i}\left(x_{i}\right)$:

$$
\tilde{\psi}_{i}\left(x_{i}\right)=\exp \left(\boldsymbol{\lambda}_{r, i}^{T} \mathbf{g}_{i}\left(x_{i}\right)\right) \quad \text { and } \quad r(\mathbf{x}) \propto \prod_{i} \tilde{\psi}_{i}\left(x_{i}\right) f_{2}(\mathbf{x})
$$

EP style scheme

$\underline{\text { Run over factors } i=1 \ldots, N \text { (in random order): }}$

Marginalize (or match moments): $s_{i}\left(x_{i}\right)=\int d \mathbf{x}_{\backslash i} r(\mathbf{x})$.

Remove factor $r_{i}^{\backslash i}\left(x_{i}\right) \propto s_{i}\left(x_{i}\right) / \widetilde{\Psi}_{i}\left(x_{i}\right) \propto \exp \left[\left(\boldsymbol{\lambda}_{s, i}-\boldsymbol{\lambda}_{r, i}\right)^{T} \mathbf{g}_{i}\left(x_{i}\right)\right]$
Update $q_{i}\left(x_{i}\right) \propto \Psi_{i}\left(x_{i}\right) r_{i}{ }^{i}\left(x_{i}\right)$, i.e $\boldsymbol{\lambda}_{q, i}=\boldsymbol{\lambda}_{s, i}-\boldsymbol{\lambda}_{r, i}$

Update marginals $s_{i}\left(x_{i}\right)$ by moment matching: $\left\langle\mathbf{g}_{i}\left(\mathbf{x}_{i}\right)\right\rangle_{q_{i}}=\left\langle\mathbf{g}_{i}\left(\mathbf{x}_{i}\right)\right\rangle_{s_{i}}$.
Update factor $\widetilde{\Psi}_{i}\left(x_{i}\right) \propto s_{i}\left(x_{i}\right) / r^{\backslash i}(\mathbf{x})$, i.e. $\boldsymbol{\lambda}_{r, i}=\boldsymbol{\lambda}_{s, i}^{\mathrm{new}}-\boldsymbol{\lambda}_{s, i}^{\text {old }}+\boldsymbol{\lambda}_{r, i}$.

Simulations - Ising models

N binary variables with pairwise interactionse $J_{i j}$:

$$
\begin{aligned}
p(\mathbf{x}) & =\frac{1}{Z} \prod_{i} \Psi_{i}\left(x_{i}\right) \exp \left(\frac{1}{2} \mathbf{x}^{T} \mathbf{J} \mathbf{x}\right) \\
\Psi_{i}\left(x_{i}\right) & =\left[\delta\left(x_{i}+1\right)+\delta\left(x_{i}-1\right)\right] e^{\theta_{i} x_{i}}
\end{aligned}
$$

Look at the approximation for the

- One-variable marginals $p\left(x_{i}\right)=\frac{1+x_{i} m_{i}}{2}$, mean $m_{i}=\left\langle x_{i}\right\rangle$.
- Two-variable marginals $p\left(x_{i}, x_{j}\right)=\frac{x_{i} x_{j} C_{i j}}{4}+p\left(x_{i}\right) p\left(x_{j}\right)$, covariance $C_{i j}=\left\langle x_{i} x_{j}\right\rangle-\left\langle x_{i}\right\rangle\left\langle x_{j}\right\rangle$.
- Free energy $G=-\ln Z$.

EC in practice - choosing $\mathrm{g}(\mathrm{x})$

Factorized restricted: consistency on $\left\langle x_{i}\right\rangle, i=1, \ldots, N$ and $\sum_{i}\left\langle x_{i}^{2}\right\rangle$

$$
\begin{aligned}
\mathrm{g}(\mathrm{x}) & =\left(x_{1}, \ldots, x_{N},-\frac{1}{2} \sum_{i} \frac{x_{i}^{2}}{2}\right) \\
\boldsymbol{\lambda} & =\left(\gamma_{1}, \ldots, \gamma_{N}, \wedge\right)
\end{aligned}
$$

Factorized: consistency on $\left\langle x_{i}\right\rangle$ and $\left\langle x_{i}^{2}\right\rangle=1, i=1, \ldots, N$

$$
\begin{aligned}
\mathbf{g}(\mathbf{x}) & =\left(x_{1},-\frac{x_{1}^{2}}{2}, \ldots, x_{N},-\frac{x_{N}^{2}}{2}\right) \\
\boldsymbol{\lambda} & =\left(\gamma_{1}, \wedge_{1}, \ldots, \gamma_{N}, \wedge_{N}\right)
\end{aligned}
$$

Structured - spanning tree: as above and $M_{i j}=\left\langle x_{i} x_{j}\right\rangle,(i j) \in \mathcal{G}$

$$
\begin{aligned}
q(\mathrm{x}) & =\prod_{(i j) \in \mathcal{G}} \frac{q_{i j}\left(x_{i}, x_{j}\right)}{q_{i}\left(x_{i}\right) q_{j}\left(x_{j}\right)} \prod_{i} q_{i}\left(x_{i}\right) \\
G\left(\mathbf{m},\left\{M_{i j}\right\}_{(i j) \in \mathcal{G}}\right) & =\sum_{(i j) \in \mathcal{G}} G_{i j}\left(m_{i}, m_{j}, M_{i j}\right)+\sum_{i}\left(1-n_{i}\right) G_{i}\left(m_{i}\right)
\end{aligned}
$$

ec015

Methods compared

- Exact.
- Factorized expectation consistent.
- Spanning tree structured expectation consistent.
- Bethe (and Kikuchi) approximation.
- Log-determinant relaxation (Wainwright \& Jordan, 2002).

Scenario I: Kappen and Albers

$$
N=10, J_{i j}=\beta w_{i j}, w_{i j} \sim \mathcal{N}(0,1) \text { and } \beta \in[0.1 ; 10]
$$

Error-measures:

$$
\begin{aligned}
\mathrm{MAD}_{1} & =\max _{i} \mid p\left(x_{i}=1\right)-p\left(x_{i}=1 \mid \text { Method }\right) \mid \\
\mathrm{MAD}_{2} & =\max _{i, j} \max _{x_{i}= \pm 1, x_{j}= \pm 1} \mid p\left(x_{i}, x_{j}\right)-p\left(x_{i}, x_{j} \mid \text { Method }\right) \mid \\
\text { AD Free energy } & =\left|G-G^{\text {Method }}\right|
\end{aligned}
$$

In EC, the non-trivial correlation estimates: $C_{i j}=\left[\left(\Lambda_{r}-\mathbf{J}\right)^{-1}\right]_{i j}$ is used for the two-variables marginals.

Maximal absolute deviation (MAD) for one-variable marginals.
Blue upper full line: EC factorized, blue lower full line EC tree, green dashed line:
Bethe and red
dash-dotted line: Kikuchi.

ec016

ec016

ec016

Scenario II: Wainwright and Jordan

$N=16$, Fully connected or 4-by-4 nearest neighbor grid.
$\underline{\theta_{i}}$ from uniform distribution: $\theta_{i} \sim \mathcal{U}\left[-d_{\mathrm{obs}}, d_{\mathrm{obs}}\right]$ with $d_{\mathrm{obs}}=0.25$.
Coupling strength:

- repulsive (anti-ferromagnetic) $J_{i j} \sim \mathcal{U}\left[-2 d_{\text {coup }}, 0\right]$,
- mixed $J_{i j} \sim \mathcal{U}\left[-d_{\text {coup }},+d_{\text {coup }}\right]$ and
- attractive (ferromagnetic) $J_{i j} \sim \mathcal{U}\left[0,+2 d_{\text {coup }}\right]$ with $d_{\text {coup }}>0$.

Problem type			Method					
			SP	LD	EC factoriz		EC tree	
Graph	Coupling	$d_{\text {coup }}$	Mean	Mean	Mean \pm std	Max	Mean \pm std	Max
Full	Repulsive	0.25	0.037	0.020	0.003 ± 0.002	0.00	0.0017 ± 0.0011	0.007
	Repulsive	0.50	0.071	0.018	0.031 ± 0.045	0.20	0.0143 ± 0.0141	0.102
	Mixed	0.25	0.004	0.020	0.002 ± 0.002	0.00	0.0013 ± 0.0008	0.005
	Mixed	0.50	0.055	0.021	0.022 ± 0.030	0.17	0.0151 ± 0.0204	0.163
	Attractive	0.06	0.024	0.027	0.004 ± 0.002	0.01	0.0025 ± 0.0014	0.007
	Attractive	0.12	0.435	0.033	0.117 ± 0.090	0.30	0.0211 ± 0.0307	0.159
Grid	Repulsive	1.0	0.294	0.047	0.153 ± 0.123	0.58	0.0031 ± 0.0021	0.013
	Repulsive	2.0	0.342	0.041	0.198 ± 0.135	0.49	0.0021 ± 0.0010	0.009
	Mixed	1.0	0.014	0.016	0.011 ± 0.010	0.08	0.0018 ± 0.0011	0.006
	Mixed	2.0	0.095	0.038	0.082 ± 0.081	0.32	0.0068 ± 0.0053	0.028
	Attractive	1.0	0.440	0.047	0.125 ± 0.104	0.36	0.0028 ± 0.0018	0.013
	Attractive	2.0	0.520	0.042	0.177 ± 0.125	0.41	0.0024 ± 0.0022	0.016

Error measure (averaged over 100 trials)

$$
\text { MeanAD }=\sum_{i} \mid p\left(\mathbf{x}_{i}=1\right)-p\left(\mathbf{x}_{i}=1 \mid \text { Method }\right) \mid / N
$$

$S P=$ Sum Product $=$ Bethe
$L D=\log$ determinant relaxation.

There is no universal best approximation!

The need for more than a framework!

Understanding the 'physics' of the problem is necessary:

- Sparse: use Bethe approximation and extensions (loopy belief propagation).
- Dense: Use central limit theorem (or cavity) arguments and extensions (replica symmetry breaking).
- Exact summation over strongly interacting subgraphs.

Scenario III: Channel division multiple access (CDMA)

Users $b_{k}= \pm 1, K=1, \ldots, K$ share one channel using

Spreading codes $\mathrm{s}_{k}=\left(s_{k}(1), \ldots, s_{k}\left(N_{c}\right)\right)$ - upsampling

$$
\begin{aligned}
& y(n)=\sum_{k=1}^{K} A_{k} b_{k} s_{k}(n)+\sigma \epsilon(n), \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}) \\
& p(\mathbf{b} \mid \mathbf{y}) \propto p(\mathbf{y} \mid \mathbf{b}) p(\mathbf{b}) \\
& q(\mathbf{b})\left.=\prod_{k} q_{k}\left(b_{k}\right) \propto \prod_{k}\left[p_{k}\left(b_{k}\right) \exp \left(\gamma_{q, k} b_{k}\right)-\lambda_{q, k} b_{k}^{2} / 2\right)\right] \\
& r(\mathbf{b}) \propto \exp \left(-\|\mathbf{y}-\mathbf{S A b}\|^{2} / 2 \sigma^{2}\right) \prod_{k}\left[\exp \left(\gamma_{r, k} b_{k}-\lambda_{r, k} b_{k}^{2} / 2\right)\right]
\end{aligned}
$$

Detection issues: Computational complexity and multiple minima.

Computational complexity and convergence

EP-style updating $r(\mathbf{x}): \boldsymbol{\lambda}_{r, k}=\boldsymbol{\lambda}_{s, k}-\eta \boldsymbol{\lambda}_{q, k}$
$\boldsymbol{\lambda}_{k}=\left(\gamma_{k}, \wedge_{k}\right), \gamma_{s, k}=\left\langle b_{k}\right\rangle_{q} /\left(1-\left\langle b_{k}\right\rangle_{q}^{2}\right)$ and $\wedge_{s, k}=1 /\left(1-\left\langle b_{k}\right\rangle_{q}^{2}\right)$

Method	Annealing	Non-Converged	BER	MAD	flops
Exact			$4.1736 \mathrm{e}-004$	0	2^{K}
EP, $\eta=1$	No	0.19%	0.0025	0.0064	$2.6897 K^{3}$
PDA, $\eta=0$	No	0%	$6.1112 \mathrm{e}-004$	0.0013	$2.3426 K^{3}$
Hybrid, $\eta=0.5$	No	0.0103%	$6.0472 \mathrm{e}-004$	0.0012	$2.3560 K^{3}$
d-loop	No	0%	0.0011	0.0078	$1000 K^{3}$
EP, $\eta=1$	$\times 4$	0.2088%	0.0024	0.0081	$4.2360 K^{3}$
PDA, $\eta=0$	$\times 4$	0.0014%	$4.6629 \mathrm{e}-004$	$9.5733 \mathrm{e}-004$	$4.3466 K^{3}$
Hybrid, $\eta=0.5$	$\times 4$	0.011%	$4.6245 \mathrm{e}-004$	$9.2471 \mathrm{e}-004$	$4.1248 K^{3}$
d-loop	$\times 4$				$4 \times 1000 K^{3}$

$K=8, N_{c}=16, S N R=-10 * \log _{10}\left(2 * \sigma^{2}\right)=8 d B, A_{k}=1$, $\mathrm{s}_{k}(n) \sim \mathcal{N}\left(0,1 / \sqrt{N_{c}}\right)$

For higher $S N R$, relative difference between exact and approximate increases.

Summary and Conclusions

Expectation consistent global approximations $q(\mathbf{x})$ and $r(\mathbf{x})$.

Approximation works because we are averaging more (than in variational) and not overcounting (as opposed to loopy BP).

Close relationship to Opper \& Winther's adaptive TAP and Minka's EP.

Not possible to use for all models (where variational applies). Further approximations needed.

Numerics important aspect for e.g. telecommunication applications.

Further approximations - iterate EC

Example Bayes mixture of Gaussians:

$$
p\left(\mathbf{Y},\left\{\pi_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}\right)=\prod_{i}\left(\sum_{k} \pi_{k} p\left(\mathbf{y}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right) p\left(\left\{\pi_{k}\right\}\right) p\left(\left\{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}\right)
$$

$\mathrm{x}=\left\{\pi_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}$.

$$
f(\mathbf{x})=\prod_{i} f_{i}(\mathbf{x}) p_{0}(\mathrm{x})
$$

First iteration:

$$
\begin{gathered}
q_{\backslash i}(\mathbf{x})=\frac{1}{Z_{q}} \prod_{i^{\prime} \neq i} f_{i^{\prime}}(\mathbf{x}) \exp \left(\boldsymbol{\lambda}_{q, i}^{T} \mathbf{g}(x)\right) p_{0}(\mathbf{x}) \\
Z=Z_{q_{\backslash i}}\left\langle f_{i}(\mathbf{x}) \exp \left(-\boldsymbol{\lambda}_{q, i}^{T} \mathbf{g}(x)\right)\right\rangle_{q_{\backslash i}} \approx Z_{q \backslash i}\left\langle f_{i}(\mathbf{x}) \exp \left(-\boldsymbol{\lambda}_{q, i}^{T} \mathbf{g}(\mathbf{x})\right)\right\rangle_{s_{i}} \\
s_{i}(\mathbf{x})=\frac{1}{Z_{s, i}} \exp \left(\boldsymbol{\lambda}_{s, i}^{T} \mathbf{g}(\mathbf{x})\right) p_{0}(\mathbf{x})
\end{gathered}
$$

Second iteration:

$$
\begin{gathered}
Z_{q \backslash i}=Z_{q_{\backslash i, j}}\left\langle f_{j}(\mathbf{x}) \exp \left(-\lambda_{q, j}^{T} \mathbf{g}(\mathbf{x})\right)\right\rangle_{q_{\backslash i, j}} \\
Z_{q_{\backslash i, j}}=\int d \mathbf{x} \prod_{k \neq i, j} f_{k}(\mathbf{x}) \exp \left(\left(\boldsymbol{\lambda}_{q, j}+\boldsymbol{\lambda}_{q, i}\right)^{T} \mathbf{g}(\mathbf{x})\right) p_{0}(\mathbf{x})
\end{gathered}
$$

$N_{\text {ex }}$ th iteration:

$$
\begin{aligned}
-\ln Z^{\mathrm{EC}} & =-\ln Z_{0}\left(\sum_{i} \boldsymbol{\lambda}_{q, i}\right)-\sum_{i} \ln Z_{i}\left(\boldsymbol{\lambda}_{s, i}-\boldsymbol{\lambda}_{q, i}\right)+\sum_{i} \ln Z_{0}\left(\boldsymbol{\lambda}_{s, i}\right) \\
Z_{0}(\boldsymbol{\lambda}) & =\int d \mathbf{x} \exp \left(\boldsymbol{\lambda}^{T} g(x)\right) p_{0}(\mathbf{x}) \\
Z_{i}(\boldsymbol{\lambda}) & =\int d \mathbf{x} f_{i}(\mathbf{x}) \exp \left(\boldsymbol{\lambda}^{T} g(x)\right) p_{0}(\mathbf{x})
\end{aligned}
$$

Simpler approximation $s_{i}(\mathrm{x})=s(\mathrm{x})$ and $q_{i}(\mathrm{x})=q(\mathrm{x}), N_{\mathrm{ex}}$

$$
-\ln Z^{\mathrm{EC}}=-\ln Z_{0}\left(N_{\mathrm{ex}} \boldsymbol{\lambda}_{q}\right)-\sum_{i} \ln Z_{i}\left(\boldsymbol{\lambda}_{s}-\boldsymbol{\lambda}_{q}\right)+N_{\mathrm{ex}} \ln Z_{0}\left(\boldsymbol{\lambda}_{s}\right)
$$

EC as KL minimization

Approximate $p(\mathrm{x})$ with $\tilde{p}(\mathrm{x}): \min _{\tilde{p}(\mathrm{x})} K L(p \| \tilde{p})$

$$
\tilde{p}(\mathrm{x})=\frac{q(\mathrm{x}) r(\mathrm{x})}{s(\mathrm{x})}
$$

or in iterated form

$$
\tilde{p}(\mathrm{x})=\frac{q(\mathrm{x}) \prod_{i} r_{i}(\mathrm{x})}{\prod_{i} s_{i}(\mathrm{x})}
$$

Expectation Consistent Free Energie for Approximate Inference
 NIPS poster

Manfred Opper and Ole Winther
ISIS
School of Electronics and Computer Science University of Southampton SO17 1BJ, United Kingdom
mo@ecs.soton.ac.uk
Informatics and Mathematical Modelling
Technical University of Denmark
DK-2800 Lyngby, Denmark
owi@imm.dtu.dk

Abstract

We propose a novel framework for deriving approximations for intractable probabilistic models. This framework is based on a free energy (negative log marginal likelihood) and can be seen as a generalization of adaptive TAP [1-3] and expectation propagation (EP) $[4,5]$ The free energy is constructed from two approximating distributions which encode different aspects of the intractable model such a single node constraints and couplings and are by construction consistent on a chosen set of moments. We test the framework on a difficult benchmark problem with binary variables on fully connected graphs and 2D grid graphs. We find good performance using sets of moments which either specify factorized nodes or a spanning tree on the nodes (structured approximation). Surprisingly, the Bethe approximation gives very inferior results even on grids.

Approximate inference

Compute expectations over distribution

$$
p(\mathrm{x})=\frac{1}{Z} f(\mathrm{x})
$$

with random variables $\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ and partition function $Z=\int d \mathrm{x} f(\mathrm{x})$.

Intractability arises either because the necessary sums are over a too large number of variables or because multivariate integrals cannot be evaluated exactly.

Many application areas: Loopy belief propagation, mixture models, factor models, independent component analysis, Gaussian processes, bootstrap methods for kernel machines, etc.

Tractability from simpler forms

In a typical scenario, $f(\mathrm{x})$ is expressed as a product of two functions

$$
\begin{equation*}
f(\mathrm{x})=f_{1}(\mathrm{x}) f_{2}(\mathrm{x}) \tag{1}
\end{equation*}
$$

with $f_{1,2}(\mathrm{x}) \geq 0$, where f_{1} is "simple" enough to allow for tractable computations. Approximate inference (e.g. variational) make substitution

$$
f_{2}(\mathrm{x}) \rightarrow \exp \left(\boldsymbol{\lambda}^{T} \mathbf{g}(\mathrm{x})\right) \equiv \exp \left(\sum_{j=1}^{K} \lambda_{j} g_{j}(\mathrm{x})\right)
$$

such that computations becomes tractable. But how to choose $\boldsymbol{\lambda}$?
In the expectation consistent framework: $\boldsymbol{\lambda}$ is chosen such that two different global approximations $q(\mathrm{x})$ and $r(\mathrm{x})$ agree on a chosen set of moments of the distributions: $\langle\mathrm{g}(\mathrm{x})\rangle_{q(\mathrm{x})}=\langle\mathrm{g}(\mathrm{x})\rangle_{r(\mathrm{x})}$.

It is convenient to use the Gibbs free energy to formalize this.
We will discuss relation to other approaches at the end!

Gibbs free energy - Two-stage optimization

Introduce trial distribution $q(\mathrm{x})$.

Step 1: fix a set of generalized moments $\langle\mathbf{g}(\mathbf{x})\rangle_{q}$ Definition of Gibbs Free Energy $G(\boldsymbol{\mu})$:

$$
\begin{equation*}
G(\boldsymbol{\mu})=\min _{q}\left\{K L(q, p) \mid\langle\mathbf{g}(\mathbf{x})\rangle_{q}=\boldsymbol{\mu}\right\}-\ln Z \tag{2}
\end{equation*}
$$

with $K L$-divergence

$$
\begin{equation*}
K L(q, p)=\int d \mathbf{x} q(\mathrm{x}) \ln \frac{q(\mathrm{x})}{p(\mathrm{x})} \tag{3}
\end{equation*}
$$

Step 2: Optimize wrt. moments

$$
\begin{equation*}
\min _{\mu} G(\boldsymbol{\mu})=-\ln Z \quad \text { and } \quad\langle\mathbf{g}\rangle=\underset{\boldsymbol{\mu}}{\operatorname{argmin}} G(\boldsymbol{\mu}) \tag{4}
\end{equation*}
$$

Gibbs free energy - properties

Explicit form of the optimized trial distribution, $Z(\boldsymbol{\lambda})=\int d \mathbf{x} f(\mathbf{x}) \exp \left(\boldsymbol{\lambda}^{T} \mathbf{g}(\right.$

$$
\begin{equation*}
q(\mathbf{x})=\frac{f(\mathbf{x})}{Z(\boldsymbol{\lambda})} \exp \left(\boldsymbol{\lambda}^{T} \mathbf{g}(\mathbf{x})\right) \tag{5}
\end{equation*}
$$

The set of Lagrange parameters $\boldsymbol{\lambda}=\boldsymbol{\lambda}(\boldsymbol{\mu})$ (often called messages in belief propagation) is chosen such that the conditions $\langle\mathbf{g}(\mathbf{x})\rangle_{q}=\boldsymbol{\mu}$ are fulfilled, i.e. $\boldsymbol{\lambda}$ satisfies

$$
\begin{equation*}
\frac{\partial \ln Z(\boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}}=\boldsymbol{\mu} \tag{6}
\end{equation*}
$$

Inserting the optimized trial distribution in $G(\boldsymbol{\mu})$:

$$
\begin{equation*}
G(\boldsymbol{\mu})=-\ln Z(\boldsymbol{\lambda}(\boldsymbol{\mu}))+\boldsymbol{\lambda}^{T}(\boldsymbol{\mu}) \boldsymbol{\mu}=\max _{\boldsymbol{\lambda}}\left\{-\ln Z(\boldsymbol{\lambda})+\boldsymbol{\lambda}^{T} \boldsymbol{\mu}\right\} \tag{7}
\end{equation*}
$$

i.e. G is the Legendre transform or dual of $-\ln Z(\boldsymbol{\lambda})$ and is convex.

Examples - factorized, tree and Gaussian

Completely factorized, i.e. $p(\mathbf{x})=\prod_{i} \psi_{i}\left(x_{i}\right)$. For simplicity we will consider biased binary variables: $\Psi_{i}\left(x_{i}\right)=\left[\delta\left(x_{i}+1\right)+\delta\left(x_{i}-\right.\right.$ $1)] e^{\theta_{i} x_{i}}$ and fix the first moments $\mathbf{m}=\langle\mathbf{x}\rangle$. Denoting the conjugate Lagrange parameters by γ :

$$
\begin{equation*}
G(\mathbf{m})=\sum_{i} G_{i}\left(m_{i}\right) \quad \text { with } \quad G_{i}\left(m_{i}\right)=\max _{\gamma_{i}}\left\{-\ln Z_{i}\left(\gamma_{i}\right)+m_{i} \gamma_{i}\right\} \tag{8}
\end{equation*}
$$

and $Z_{i}\left(\gamma_{i}\right)=\int d x_{i} \Psi_{i}(\xi) e^{\gamma_{i} x_{i}}=2 \cosh \left(\gamma_{i}+\theta_{i}\right)$.
Tree-connected graph. For the case where either the couplings and the moments together define a tree-connected graph, we can write the free energy in term of single- and two-node free energies. Considering again completely factorized binary variables, all non-trivial moments on the graph $(i j) \in \mathcal{G}$ are the means \mathbf{m} and correlations of linked nodes $M_{i j}=\left\langle x_{i} x_{j}\right\rangle$:

$$
\begin{equation*}
G\left(\mathbf{m},\left\{M_{i j}\right\}_{(i j) \in \mathcal{G}}\right)=\sum_{(i j) \in \mathcal{G}} G_{i j}\left(m_{i}, m_{j}, M_{i j}\right)+\sum_{i}\left(1-n_{i}\right) G_{i}\left(m_{i}\right) \tag{9}
\end{equation*}
$$

where $G_{i j}\left(m_{i}, m_{j}, M_{i j}\right)$ is the two-node free energy defined in a similar fashion as the one-node free energy, n_{i} the number of links to node i and $G_{i}\left(m_{i}\right)$ is the one-node free energy.

Gaussian distribution. We set $\boldsymbol{\mu}=(\mathbf{m}, \mathbf{M})$ with all first moments \mathbf{m} and an arbitrary subset of second moments \mathbf{M} for a Gaussian model $\Psi_{i}\left(x_{i}\right) \propto \exp \left[a_{i} x_{i}-\frac{b_{i}}{2} x_{i}^{2}\right]$ and $p(\mathbf{x}) \propto \prod_{i} \Psi_{i}\left(x_{i}\right) \exp \left(\mathbf{x}^{T} \mathbf{J} \mathbf{x} / 2\right)$. We introduce conjugate variables γ and $-\Lambda / 2 . \gamma$ can be eliminated analytically, whereas we get a log-determinant maximization problem for $\boldsymbol{\Lambda}$ [6]:

$$
\begin{align*}
G(\mathbf{m}, \mathbf{M})= & -\frac{1}{2} \mathbf{m}^{T} \mathbf{J} \mathbf{m}-\mathbf{m}^{T} \mathbf{a}+\frac{1}{2} \sum_{i} M_{i i} b_{i} \tag{10}\\
& +\max _{\Lambda}\left\{\frac{1}{2} \ln \operatorname{det}(\Lambda-\mathbf{J})-\frac{1}{2} \operatorname{Tr} \Lambda\left(\mathbf{M}-\mathbf{m m}^{T}\right)\right\}
\end{align*}
$$

Exact interpolation for Gibbs free energy

Introduce smooth interpolant on $f_{2}(x) \rightarrow f_{2}(x, t)$,

$$
\begin{align*}
f_{2}(\mathbf{x}, t=0) & =1 \quad \text { and } f_{2}(\mathbf{x}, t=1)=f_{2}(\mathbf{x}), \quad 0 \leq t \leq 1 \\
q(\mathbf{x} \mid t) & =\frac{1}{Z_{q}(\boldsymbol{\lambda}, t)} f_{1}(\mathbf{x}) f_{2}(\mathbf{x}, t) \exp \left(\boldsymbol{\lambda}^{T} \mathbf{g}(\mathbf{x})\right) \tag{11}\\
G_{q}(\boldsymbol{\mu}, t) & =\max _{\boldsymbol{\lambda}}\left\{-\ln Z_{q}(\boldsymbol{\lambda}, t)+\boldsymbol{\lambda}^{T} \boldsymbol{\mu}\right\} . \tag{12}
\end{align*}
$$

Interpolation between exact $G(\boldsymbol{\mu})=G_{q}(\boldsymbol{\mu}, t=1)$ and 'free model'

$$
G_{q}(\boldsymbol{\mu}, 1)-G_{q}(\boldsymbol{\mu}, 0)=\int_{0}^{1} d t \frac{d G_{q}(\boldsymbol{\mu}, t)}{d t}=-\int_{0}^{1} d t\left\langle\frac{d \ln f_{2}(\mathrm{x}, t)}{d t}\right\rangle_{q(\mathrm{x} \mid t)}
$$

because $\frac{\partial \ln Z(\boldsymbol{\lambda}, t)}{\partial t}=\left\langle\frac{d \ln f_{2}(\mathrm{x}, t)}{d t}\right\rangle_{q(\mathrm{x} \mid t)}$ and saddlepoint condition:

$$
\frac{d G(\boldsymbol{\mu}, t)}{d t}=-\frac{\partial \ln Z(\boldsymbol{\lambda}, t)}{\partial t}+\left(\boldsymbol{\mu}-\frac{\partial \ln Z(\boldsymbol{\lambda}, t)}{\partial \boldsymbol{\lambda}}\right) \frac{d \boldsymbol{\lambda}^{T}}{d t}=-\frac{\partial \ln Z(\boldsymbol{\lambda}, t)}{\partial t}
$$

Expectation consistent (EC) approximation

Introduce second tractable familiy (the first is the 'free' distribution $q(\mathrm{x}, t=0)$)

$$
\begin{equation*}
r(\mathbf{x} \mid t)=\frac{1}{Z_{r}(\boldsymbol{\lambda}, t)} f_{2}(\mathbf{x}, t) \exp \left(\boldsymbol{\lambda}^{T} \mathbf{g}(\mathbf{x})\right) \tag{13}
\end{equation*}
$$

Note the $f_{1}(\mathbf{x})$-factor does not appear. Again parameters $\boldsymbol{\lambda}$ will be chosen to guarantee consistency for the expectations of g , i.e. $\langle\mathrm{g}(\mathrm{x})\rangle_{r(\mathrm{x} \mid t)}=\boldsymbol{\mu}$

Using $r(\mathbf{x} \mid t)$ instead of $q(\mathbf{x} \mid t)$ gives us the central approximation

$$
G_{q}(\boldsymbol{\mu}, 1)-G_{q}(\boldsymbol{\mu}, 0) \approx-\int_{0}^{1} d t\left\langle\frac{d \ln f_{2}(\mathbf{x}, t)}{d t}\right\rangle_{r(\mathrm{x} \mid t)}=G_{r}(\boldsymbol{\mu}, 1)-G_{r}(\boldsymbol{\mu}, 0)
$$

The last equality holds because q and r contain the same (exponential) family.

$$
G_{q}(\boldsymbol{\mu}, 1) \approx G_{q}(\boldsymbol{\mu}, 0)+G_{r}(\boldsymbol{\mu}, 1)-G_{r}(\boldsymbol{\mu}, 0) \equiv G^{\mathrm{EC}}(\boldsymbol{\mu})
$$

Simplified notation: $G_{q} \equiv G_{q}(\boldsymbol{\mu}, 0), G_{r} \equiv G_{r}(\boldsymbol{\mu}, 1)$ and $G_{s} \equiv G_{r}(\boldsymbol{\mu}, 0)$.

Variational approximation

The main advantage of the EC approximation is that it takes into account interaction of the variables in the $f_{2}(\mathrm{x})$ part retained in $r(\mathrm{x})$ distribution. The EC approximation can also be justified by central limit theory (cavity) arguments. See below for a discussion of when to expect the different types of approximations to work well.

If the interpolant is $f_{2}(\mathrm{x}, t)=\left[f_{2}(\mathrm{x})\right]^{t}$, we can recover the variational approximation by replacing the average over $q(\mathbf{x} \mid t)$ with an average over the free model, $q(\mathrm{x} \mid 0)$:

$$
\begin{aligned}
G(\boldsymbol{\mu}) & \approx G(\boldsymbol{\mu}, 0)-\int_{0}^{1} d t\left\langle\frac{d \ln f_{2}(\mathrm{x}, t)}{d t}\right\rangle_{q(\mathrm{x} \mid 0)} \\
& =G(\boldsymbol{\mu}, 0)-\left\langle\ln f_{2}(\mathrm{x})\right\rangle_{q(\mathrm{x} \mid 0)}=G^{\operatorname{var}}(\boldsymbol{\mu})
\end{aligned}
$$

In the variational approx. we are neglecting even more of the interaction part!

Pairwise potentials

$$
\begin{equation*}
p(\mathbf{x})=\frac{1}{Z} \prod_{\alpha} \Psi_{\alpha}\left(\mathbf{x}_{\alpha}\right) \exp \left(\sum_{i<j} x_{i} J_{i j} x_{j}\right) \tag{14}
\end{equation*}
$$

where the \mathbf{x}_{α} denote tractable non-Gaussian potentials defined on disjoint subsets of variables \mathbf{x}_{α}, (e.g. factorized or a spanning tree).

Fix $m_{i}=\left\langle x_{i}\right\rangle$ and $M_{i j}=\left\langle x_{i} x_{j}\right\rangle$ and take as our second tractable family $r(\mathrm{x})$, the Gaussian part of $p(\mathrm{x})$, i.e. $f_{2}(\mathrm{x})=\exp \left(\sum_{i<j} x_{i} J_{i j} x_{j}\right)$, then G_{r} and G_{s} will be free energies of a Gaussian with \mathbf{J} and $\mathbf{J}=\mathbf{0}$, respectively:

$$
\begin{align*}
G^{\mathrm{EC}}(\mathbf{m}, \mathbf{M})= & G_{q}(\mathbf{m}, \mathbf{M}, 0)-\frac{1}{2} \mathbf{m}^{T} \mathbf{J m} \tag{15}\\
& +\max _{\Lambda}\left\{\frac{1}{2} \ln \operatorname{det}(\Lambda-\mathbf{J})-\frac{1}{2} \operatorname{Tr} \Lambda\left(\mathbf{M}-\mathbf{m m}^{T}\right)\right\} \\
& -\max _{\Lambda}\left\{\frac{1}{2} \ln \operatorname{det} \Lambda-\frac{1}{2} \operatorname{Tr} \Lambda\left(\mathbf{M}-\mathbf{m m}^{T}\right)\right\}
\end{align*}
$$

where the free energy $G_{q}(\mathbf{m}, \mathbf{M}, 0)$ will depend explicitly upon the potentials $\Psi_{\alpha}\left(\mathbf{x}_{\alpha}\right)$.

What can we get non-trivial estimates for in EC?

The two complementary approximations $q(x)$ and $r(x)$ (here exemplified for pairwise interactions) give:

- Marginal distributions

$$
q(\mathbf{x}) \propto \prod_{i} \Psi_{i}\left(x_{i}\right) \exp \left(\gamma_{q}^{T} \mathbf{x}-\mathbf{x}^{T} \boldsymbol{\Lambda}_{q} \mathbf{x} / 2\right)
$$

is tractable and includes the non-trivial constraints on the variables. For e.g. factorized moments, the marginals are:

$$
q\left(x_{i}\right) \propto \Psi_{i}\left(x_{i}\right) \exp \left(\gamma_{q, i} x_{i}-x_{i}^{2} \wedge_{q, i} / 2\right)
$$

- Correlations

$$
r(\mathbf{x}) \propto \exp \left(\gamma_{r}^{T} \mathbf{x}-\mathbf{x}^{T}\left(\boldsymbol{\Lambda}_{r}-\mathbf{J}\right) \mathbf{x} / 2\right)
$$

is a global Gaussian approximation with non-trivial covariance

$$
C\left(x_{i}, x_{j}\right)=\left\langle x_{i} x_{j}\right\rangle_{r(\mathrm{x})}-\left\langle x_{i}\right\rangle_{r(\mathrm{x})}\left\langle x_{j}\right\rangle_{r(\mathrm{x})}=\left[\left(\Lambda_{r}-\mathbf{J}\right)^{-1}\right]_{i j}
$$

- The free energy $G^{\mathrm{EC}} \approx-\ln Z$. Useful in Bayesian statistics since Z is the marginal likelihood (or evidence) of the model.

EC free energy is upper bounded by variational free energy

Algorithmics

Solving the optimization problem $\min _{\mu} G^{\mathrm{EC}}(\boldsymbol{\mu})$ is non-trivial: it may be non-convex:

$$
G^{\mathrm{EC}}(\boldsymbol{\mu})=G_{q}(\boldsymbol{\mu})+G_{r}(\boldsymbol{\mu})-G_{S}(\boldsymbol{\mu})
$$

because it is a non-convex combination of (convex) free energies. We can use

- Guaranteed convergent - double loop, variational bounding [7].
- Gradient methods directly on $G(\boldsymbol{\mu})$ (or unconstrained transformation of $\boldsymbol{\mu}$, e.g. for $x_{i}= \pm 1$ use $\gamma_{i}=\tanh ^{-1}\left(m_{i}\right)$ instead of mean value m_{i}.
- Expectation propagation $[4,5,8]$.

Guaranteed convergent - Variational bounding, double loop

The basic idea is to minimize a decreasing sequence of convex upper bounds to $G_{\text {EC }}[7,8,9]$. Linearize concave term $-G_{s}(\boldsymbol{\mu})$ at the present iteration $\boldsymbol{\mu}^{*}, G_{s}(\boldsymbol{\mu}) \geq G_{s}^{\text {lbound }}(\boldsymbol{\mu})=-C_{*}+\boldsymbol{\mu}^{T} \boldsymbol{\lambda}_{s}^{*}, C_{*} \equiv$ $\ln Z_{q}\left(\boldsymbol{\lambda}_{s}^{*}\right)$ and $\boldsymbol{\lambda}_{s}^{*}=\boldsymbol{\lambda}_{s}\left(\boldsymbol{\mu}^{*}\right)$.

$$
\begin{align*}
G_{\mathrm{EC}}(\boldsymbol{\mu}) & \leq G_{q}(\boldsymbol{\mu})+G_{r}(\boldsymbol{\mu})-\boldsymbol{\mu}^{T} \boldsymbol{\lambda}_{s}^{*}+C_{*} \\
& =\min _{\boldsymbol{\mu}} \max _{\boldsymbol{\lambda}_{q}, \boldsymbol{\lambda}_{r}}\left\{-\ln Z_{q}\left(\boldsymbol{\lambda}_{q}\right)-\ln Z_{r}\left(\boldsymbol{\lambda}_{r}\right)+\boldsymbol{\mu}^{T}\left(\boldsymbol{\lambda}_{q}+\boldsymbol{\lambda}_{r}-\boldsymbol{\lambda}_{s}^{*}\right)+C_{*}\right\} \\
& =\max _{\boldsymbol{\lambda}_{q}, \boldsymbol{\lambda}_{r}}\left\{-\ln Z_{q}\left(\boldsymbol{\lambda}_{q}\right)-\ln Z_{r}\left(\boldsymbol{\lambda}_{r}\right) \mid \boldsymbol{\lambda}_{q}+\boldsymbol{\lambda}_{r}=\boldsymbol{\lambda}_{s}^{*}\right\}+C_{*} \\
& =\max _{\boldsymbol{\lambda}_{r}}\left\{-\ln Z_{q}\left(\boldsymbol{\lambda}_{s}^{*}-\boldsymbol{\lambda}_{r}\right)-\ln Z_{r}\left(\boldsymbol{\lambda}_{r}\right)+C_{*}\right\} . \tag{16}
\end{align*}
$$

Double loop recipe

1. Outer loop: For fixed old value $\boldsymbol{\mu}^{*}$, bound the concave term $-G_{s}(\boldsymbol{\mu})$ by $-G_{s}^{\text {lbound }}(\boldsymbol{\mu})$ go get the convex upper bound to $G_{\text {EC }}(\boldsymbol{\mu})$.
2. Inner loop: Solve the concave maximization problem

$$
\begin{equation*}
\max _{\boldsymbol{\lambda}_{r}} \mathcal{L} \quad \text { with } \mathcal{L}=-\ln Z_{q}\left(\boldsymbol{\lambda}_{s}^{*}-\boldsymbol{\lambda}_{r}\right)-\ln Z_{r}\left(\boldsymbol{\lambda}_{r}\right) \tag{17}
\end{equation*}
$$

Inserting the solution into $\boldsymbol{\mu}\left(\boldsymbol{\lambda}_{r}\right)=\langle\mathbf{g}(\mathbf{x})\rangle_{r}$ gives new value $\mu^{*}=\mu$.

Currently, we either solve the non-linear inner-loop optimization by a sequential approach that are computationally efficient when G_{r}
is the free energy of a multivariate Gaussian or by interior point methods $[6,10,11]$.

Unfortunately, this approach can be very slow especially for hard problems.

Expectation propagation (EP) [4,5,8]

EP can be interpreted as a greedy algorithm [8] for minimizing the EC free energy: Cycling over the factors

$$
\tilde{\Psi}_{i}\left(x_{i}\right)=\exp \left(\boldsymbol{\lambda}_{r, i}^{T} \mathbf{g}_{i}\left(x_{i}\right)\right) \quad \text { and } \quad r(\mathbf{x})=\prod_{i} \tilde{\Psi}_{i}\left(x_{i}\right) f_{2}(\mathbf{x})
$$

for simplicity assuming that they contain only one variable.

1. Deletion of factor from $r(\mathbf{x}): r^{\backslash i}(\mathbf{x}) \propto r(\mathbf{x}) / \tilde{\Psi}_{i}\left(x_{i}\right)$ or

$$
r_{i}^{\backslash i}\left(x_{i}\right) \propto s_{i}\left(x_{i}\right) / \widetilde{\Psi}_{i}\left(x_{i}\right) \propto \exp \left[\left(\boldsymbol{\lambda}_{s, i}-\boldsymbol{\lambda}_{r, i}\right)^{T} \mathbf{g}_{i}\left(x_{i}\right)\right]
$$

where $s_{i}\left(x_{i}\right) \propto \exp \left[\boldsymbol{\lambda}_{s, i}^{T} \mathbf{g}_{i}\left(x_{i}\right)\right]$ is the marginal distribution of $r(\mathbf{x})$.
2. Incorporate evidence $\Psi_{i}\left(x_{i}\right): q_{i}\left(x_{i}\right) \propto \Psi_{i}\left(x_{i}\right) r_{i}{ }^{i}\left(x_{i}\right)$ and update sufficient statistics $\mathbf{m}_{i}\left(x_{i}\right)=\left\langle\mathbf{g}_{i}\left(x_{i}\right)\right\rangle_{q_{i}}$:
3. Update factor $\tilde{\Psi}_{i}\left(x_{i}\right) \propto s_{i}\left(x_{i}\right) / r^{\backslash i}(\mathrm{x})$: First set the marginal distribution $s_{i}\left(x_{i}\right)$ to match the moments: $\mathbf{m}_{i}\left(x_{i}\right)=\left\langle\mathbf{g}_{i}\left(x_{i}\right)\right\rangle_{q_{i}}$. Finally, recalculate all the sufficient statistics from the new $r(\mathrm{x})$: $\mathrm{m}=\langle\mathrm{g}(\mathrm{x})\rangle_{r}$.

We can identify all steps as sequentially updating the distributions and moments: $\boldsymbol{\lambda}_{s}, \boldsymbol{\lambda}_{q}, \boldsymbol{\mu}, \boldsymbol{\lambda}_{s}, \boldsymbol{\lambda}_{r}, \boldsymbol{\mu}, \ldots$ using the saddlepoint conditions on $\boldsymbol{\mu}, \boldsymbol{\lambda}_{q}, \boldsymbol{\lambda}_{r}$ and $\boldsymbol{\lambda}_{s}$.

This greedy approach is fast when it converges, unfortunately, it often fails especially for hard (non-convex?) problems.

Simulations - Ising models

N binary variables with pairwise interactionse $J_{i j}$:

$$
\begin{aligned}
p(\mathbf{x}) & =\frac{1}{Z} \prod_{i} \Psi_{i}\left(x_{i}\right) \exp \left(\frac{1}{2} \mathbf{x}^{T} \mathbf{J} \mathbf{x}\right) \\
\Psi_{i}\left(x_{i}\right) & =\left[\delta\left(x_{i}+1\right)+\delta\left(x_{i}-1\right)\right] e^{\theta_{i} x_{i}}
\end{aligned}
$$

Look at the approximation for the

- One-variable marginals $p\left(x_{i}\right)=\frac{1+x_{i} m_{i}}{2}$, mean $m_{i}=\left\langle x_{i}\right\rangle$.
- Two-variable marginals $p\left(x_{i}, x_{j}\right)=\frac{x_{i} x_{j} C_{i j}}{4}+p\left(x_{i}\right) p\left(x_{j}\right)$, covariance $C_{i j}=\left\langle x_{i} x_{j}\right\rangle-\left\langle x_{i}\right\rangle\left\langle x_{j}\right\rangle$.
- Free energy $G=-\ln Z$.

EC in practice - choosing $\mathrm{g}(\mathrm{x})$

Factorized restricted: consistency on $\left\langle x_{i}\right\rangle, i=1, \ldots, N$ and $\sum_{i}\left\langle x_{i}^{2}\right\rangle$

$$
\begin{aligned}
\mathrm{g}(\mathrm{x}) & =\left(x_{1}, \ldots, x_{N},-\frac{1}{2} \sum_{i} \frac{x_{i}^{2}}{2}\right) \\
\boldsymbol{\lambda} & =\left(\gamma_{1}, \ldots, \gamma_{N}, \wedge\right)
\end{aligned}
$$

Factorized: consistency on $\left\langle x_{i}\right\rangle$ and $\left\langle x_{i}^{2}\right\rangle=1, i=1, \ldots, N$

$$
\begin{aligned}
\mathbf{g}(\mathbf{x}) & =\left(x_{1},-\frac{x_{1}^{2}}{2}, \ldots, x_{N},-\frac{x_{N}^{2}}{2}\right) \\
\boldsymbol{\lambda} & =\left(\gamma_{1}, \wedge_{1}, \ldots, \gamma_{N}, \wedge_{N}\right)
\end{aligned}
$$

Structured - spanning tree: as above and $M_{i j}=\left\langle x_{i} x_{j}\right\rangle,(i j) \in \mathcal{G}$

$$
\begin{aligned}
q(\mathrm{x}) & =\prod_{(i j) \in \mathcal{G}} \frac{q_{i j}\left(x_{i}, x_{j}\right)}{q_{i}\left(x_{i}\right) q_{j}\left(x_{j}\right)} \prod_{i} q_{i}\left(x_{i}\right) \\
G\left(\mathbf{m},\left\{M_{i j}\right\}_{(i j) \in \mathcal{G}}\right) & =\sum_{(i j) \in \mathcal{G}} G_{i j}\left(m_{i}, m_{j}, M_{i j}\right)+\sum_{i}\left(1-n_{i}\right) G_{i}\left(m_{i}\right)
\end{aligned}
$$

ec015

Methods compared

- Exact.
- Factorized expectation consistent.
- Spanning tree structured expectation consistent.
- Bethe (and Kikuchi) approximation.
- Log-determinant relaxation (Wainwright \& Jordan, 2002).

Scenario I: Kappen and Albers

$$
N=10, J_{i j}=\beta w_{i j}, w_{i j} \sim \mathcal{N}(0,1) \text { and } \beta \in[0.1 ; 10]
$$

Error-measures:

$$
\begin{aligned}
\mathrm{MAD}_{1} & =\max _{i} \mid p\left(x_{i}=1\right)-p\left(x_{i}=1 \mid \text { Method }\right) \mid \\
\mathrm{MAD}_{2} & =\max _{i, j} \max _{x_{i}= \pm 1, x_{j}= \pm 1} \mid p\left(x_{i}, x_{j}\right)-p\left(x_{i}, x_{j} \mid \text { Method }\right) \mid \\
\text { AD Free energy } & =\left|G-G^{\text {Method }}\right|
\end{aligned}
$$

In EC, the non-trivial correlation estimates: $C_{i j}=\left[\left(\Lambda_{r}-\mathbf{J}\right)^{-1}\right]_{i j}$ is used for the two-variables marginals.

Maximal absolute deviation (MAD) for one-variable marginals.
Blue upper full line: EC factorized, blue lower full line EC tree, green dashed line:
Bethe and red
dash-dotted line: Kikuchi.

ec016

ec016

ec016

Scenario II: Wainwright and Jordan

$N=16$, Fully connected or 4-by-4 nearest neighbor grid.
$\underline{\theta_{i}}$ from uniform distribution: $\theta_{i} \sim \mathcal{U}\left[-d_{\mathrm{obs}}, d_{\mathrm{obs}}\right]$ with $d_{\mathrm{obs}}=0.25$.
Coupling strength:

- repulsive (anti-ferromagnetic) $J_{i j} \sim \mathcal{U}\left[-2 d_{\text {coup }}, 0\right]$,
- mixed $J_{i j} \sim \mathcal{U}\left[-d_{\text {coup }},+d_{\text {coup }}\right]$ and
- attractive (ferromagnetic) $J_{i j} \sim \mathcal{U}\left[0,+2 d_{\text {coup }}\right]$ with $d_{\text {coup }}>0$.

Problem type			Method					
			SP	LD	EC factoriz		EC tree	
Graph	Coupling	$d_{\text {coup }}$	Mean	Mean	Mean \pm std	Max	Mean \pm std	Max
Full	Repulsive	0.25	0.037	0.020	0.003 ± 0.002	0.00	0.0017 ± 0.0011	0.007
	Repulsive	0.50	0.071	0.018	0.031 ± 0.045	0.20	0.0143 ± 0.0141	0.102
	Mixed	0.25	0.004	0.020	0.002 ± 0.002	0.00	0.0013 ± 0.0008	0.005
	Mixed	0.50	0.055	0.021	0.022 ± 0.030	0.17	0.0151 ± 0.0204	0.163
	Attractive	0.06	0.024	0.027	0.004 ± 0.002	0.01	0.0025 ± 0.0014	0.007
	Attractive	0.12	0.435	0.033	0.117 ± 0.090	0.30	0.0211 ± 0.0307	0.159
Grid	Repulsive	1.0	0.294	0.047	0.153 ± 0.123	0.58	0.0031 ± 0.0021	0.013
	Repulsive	2.0	0.342	0.041	0.198 ± 0.135	0.49	0.0021 ± 0.0010	0.009
	Mixed	1.0	0.014	0.016	0.011 ± 0.010	0.08	0.0018 ± 0.0011	0.006
	Mixed	2.0	0.095	0.038	0.082 ± 0.081	0.32	0.0068 ± 0.0053	0.028
	Attractive	1.0	0.440	0.047	0.125 ± 0.104	0.36	0.0028 ± 0.0018	0.013
	Attractive	2.0	0.520	0.042	0.177 ± 0.125	0.41	0.0024 ± 0.0022	0.016

Error measure (averaged over 100 trials)

$$
\text { MeanAD }=\sum_{i} \mid p\left(\mathbf{x}_{i}=1\right)-p\left(\mathbf{x}_{i}=1 \mid \text { Method }\right) \mid / N
$$

$S P=$ Sum Product $=$ Bethe
$L D=\log$ determinant relaxation.

There is no universal best approximation.

The need for more than a framework!

Understanding the 'physics' of the problem is neecssary:

- Sparse: use Bethe approximation and extensions (loopy belief propagation).
- Dense: Use central limit theorem (or cavity) arguments and extensions (replica symmetry breaking).
- In between: structured extensions of the above.

Conclusion

EC provides a framework for approximate inference.

Relation to other approaches: variational (Bayes), adaptive TAP, expectation propagation, Bethe+, EP, log-determinant relaxation.

Outlook

EC for RSB.

More efficient algorithms needed - variational bounding can be very slow when the problem is hard. E.g. EP is fast, but doesn't converge on hard cases.

Perhaps relax the requirement for complete consistency of complementary approximations.

References

[1] M. Opper and O. Winther. Gaussian processes for classification: Mean field algorithms. Neural Computation, 12:2655-2684, 2000.
[2] M. Opper and O. Winther. Adaptive and self-averaging Thouless-Anderson-Palmer mean field theory for probabilistic modeling. Phys. Rev. E, 64:056131, 2001
[3] M. Opper and O. Winther. Tractable approximations for probabilistic models: The adaptive Thouless-Anderson-Palmer mean field approach. Phys. Rev. Lett., 86:3695, 2001
[4] T. P. Minka. Expectation propagation for approximate Bayesian inference. In UAI 2001, pages 362-369, 2001
[5] T. Minka and Y. Qi. Tree-structured approximations by expectation propagation. In S. Thrun, L. Saul, and B. Schölkopf, editors, NIPS 16. MIT Press, Cambridge, MA, 2004.
[6] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[7] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Comput., 15(4): 915-936, 2003.
[8] T. Heskes and O. Zoeter, Expectation propagation for approximate inference in dynamic Bayesian networks. In A. Darwiche and N. Friedman, editors, Proceedings UAI-2002", 216-233, 2002.
[9] T. Heskes, K. Albers, and H. Kappen. Approximate inference and constrained optimization. In UAI-03, pages 313-320, San Francisco, CA, 2003. Morgan Kaufmann Publishers.
[10] M. J. Wainwright and M. I. Jordan, "Semidefinite methods for approximate inference on graphs with cycles," Tech. Rep. UCB/CSD-03-1226, UC Berkeley CS Division, 2003.
[11] M. Wainwright and M. I. Jordan, "Semidefinite relaxations for approximate inference on graphs with cycles," in NIPS 16. MIT Press, Cambridge, MA, 2004.
[12] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 689-695, 2001.

