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Examples of 2-D channels

• 2-D inter-symbol interference (ISI) channels
– Magnetic and optical recording

from: J.A. O’Sullivan, N. Singla, Y. Wu, R.S. Indeck
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Examples of 2-D channels

• Multiple-access (MA) channels – Wyner’s model
– Cellular network’s uplink.
– Indoor Wireless LAN.
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Outline

• Examples of 2-D channels

• System model
• Optimal detection

• 2-D channels as undirected graphical models
• Detection = Inference

– Exact inference
– Approximate inference

• Belief propagation (BP)
• Generalized belief propagation (GBP)

• Experimental results
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Outline (cont.)

• Cluster variation method (CVM) for 
estimation of the information rate of 2D 
channels.

• Experimental results

• Why is GBP-based CVM correct in this case?
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System model

In vector-matrix form

• 2-D channels differ in S
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• Objective
– Recover d from y, or 
– Compute Pr(x|y), where x are possible values of d.
– Assume that d are i.i.d and equiprobable.

• Omitting non-sufficient statistics terms

where
– interference cross-correlation matrix
– output vector of a filter matched to the

interference structure 

System model (cont.)
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Optimal detection

Problem – intractable

• MAP decision



PASCAL

2-D channels as 
undirected graphical models

• p(x|y) defines an undirected graphical model 

where the potentials
– Compatibility function

– Evidence, or local likelihood



Examples of 2-D channel 
representations

ISI Rectangular 
cellular topology

Hexagonal 
cellular topology
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structure
(not a graph)
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Exact inference – junction tree

• Junction tree complexity
– Exponential in the size of the largest clique

• For NxN grid-like graphs: N x memory depth ν

• Conclusion
– We must resort to approximate inference 

methods
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Approximate inference: 
belief propagation 

• Belief propagation often yields good  
approximations when the cycles in the graph 
are long

• However – 2-D channels contain many short 
cycles 

• Empirical results show
– Belief propagation fails to converge
– When it converges its approximation is poor
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Generalized belief propagation (GBP)
[J. S. Yedidia, W. T. Freeman and Y. Weiss]

• BP <-> Bethe approximation to the free energy
• GBP <-> More complicated free energy approximations

– Several ways for creating free energy approximations
• We use the Kikuchi approximation, i.e., the cluster variation 

method  

• GBP is a global name for a family of message passing 
algorithms 

– Several ways for passing messages
• We use the ‘two-way algorithm’. 
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Generalized belief propagation (GBP)
• Rational - choose the basic region to 

encompass the shortest loops

• We have nearest neighbor and next-nearest neighbor 
interactions, thus a 3x3 nodes basic cluster is a 
natural choice

• E.g. ISI

Region



Generalized belief propagation (GBP)
• In GBP messages are propagating between 

groups (regions) of nodes
• Exact inference is performed within each group
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Messages propagating between 
groups of nodes
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Results: ISI equalization
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Results: 
hexagonal topology cellular network
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Conclusions - ITW

• Practically optimal error performance using a 
fully tractable message passing scheme
– Consistent both over SNR and interference range
– The marginal beliefs well approximate the 

a-posteriori probabilities (APP)
– superior to other sub-optimal receivers

• A real-life application in which GBP>>BP
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Current  work

• Joint work with Shlomo Shamai (Shitz), Technion.

• Cluster variation method (CVM) for the estimation of 
the information rate of 2D channels.

• Experimental results.

• Why is GBP-based CVM correct in this case?
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Approximate free energy

NxN system

Estimate the exact and approximate free energies per site

Hexagonal cellular network, SNR=0dB, alpha=0.5



The connection between the free energy 
and the information rate

I(x;y) h(y) h(y |x)= −

k

k
h(y) limh(y )/k

→∞
�

As far as we know, only bounds exist for I(x;y) in the 2D case

Information rate:

are stationary random processes.

are differential entropy rates
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Assume a system of size N2=k
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The connection between the free energy 
and the information rate (cont.)

k k k

k k
h(y |x) limh(y |x )/k limh(v )/k
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21 (1 log2 )
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Assuming a stationary ergodic process, using the 
Shannon-McMillan-Breiman theorem

k1 log(p(y )) h(y)
k

− → with probability one.

h(y|x):

h(y):
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The connection between free energy 
and symmetric information rate

Estimating p(yk):

Assume x1,…,xk are i.i.d. and equiprobable.

2k k k 2 k/2 k k
k k 2
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The connection between free energy and 
the symmetric information rate (cont.)

Thus,

2 2

I(x;y) h(y) h(y|x)

         (log(2) log 2 F/k) (1/2 log 2 )
         log2 1/2 F/k

= −

= + πσ + − + πσ

= − +

Idea: Use the CVM of a large system to approximate 
the free energy F.
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Experimental results ISI

Upper and lower bounds – Chen and Siegel, “On the 
symmetric information rate of two-dimensional finite state 
ISI channels”, ITW 2003.



PASCAL

Experimental results: Wyner’s model

Wyner’s result
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Experimental results: Wyner’s model
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Why do GBP-based CVM 
serve so remarkably? 

• Currently we do not have a rigorous answer.

• Maybe the following empirical evidence may shed light 
on this issue:

– The CVM results are not exact.

– When does not it work? In a different setting : homogeneous 
antiferromagnetic interactions with random fields.

– GBP converges to the same solution under different initial 
conditions (convexity of the Kikuchi free energy?).

– ‘Local’ estimates may also perform well.
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Local estimates and GBP

i ij
j

|h | |R |> ∑
Count the number of 
sites for which

Local exact inference: 
neighborhood size 2, 3± ±


