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Probabilistic Graphical Models and
Statistical Mechanics Models

Factor graph representation (esp. useful for non—pairwise interact

H(Sh 52, 53, 54, S5, 86) - Ha(sla 32) + Hb(327 53, 34) + HC(S?n 54, S5.
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Statistical mechanics models:
H(s1,S82,...5N) = Z H.(s4q),

1

p(s1,S2,...SN) = Eexp[—H(sl, S, ... SN,

7 = Zexp[ H(s1,82,...5N)]
{Sz

Probabilistic graphical models (on an undirected graph, for simp

p(s1,82,...SN) :§H¢a(sa), Sq = {si,1 € a}

Directed graphs: replace potentials ¢, with conditional probabilities.
Different formulations of the same problem

One is often interested in computing marginal distributions and/or
configurations.



Cluster variation method (CVM)

e Variational principle of equilibrium statistical mechanics:

F =—InZ = min,F(p) = min,, Z p(s)H (s) + p(s)Inp(

> p(s) =1

S

p(s) = = exp[—H(s)] = argmin F

_ G

e Cluster or Region: subset a of the factor graph, such that if a fac
belongs to «, all its variable nodes belong to «



e Cluster probability, cluster energy, cluster entropy:

pa(sa) — Z p(S)

e Cumulant expansion of the entropy:

S, ::jgj‘gg = Sb ::EE:(_JJ”G_”BSE

fCa alp

Fo) =S p()HE) -3 5
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e Truncation of the cumulant expansion to a set R of clusters made o
maximal clusters and all their subclusters

Zggzzgﬁzz:aaSa
s

BER a€R

F({pon Q€ R}) = Zaafa(pa)

a€ER

Folpa) = Z Pa(8a)Ho(5a) + TPa(sa) Inpa(sa)]

Sa

Meaning of cumulants

Two weakly correlated variables
_ (0 (0) 1 5 |
P12(s1,82) = Py (s1)py (s2) [L+€0p(s1,82)], <

Sip =812 — 51 — S5 = —(In[1 +edp(s1,s2)]) = O(e)



Behaviour: Ising model, square approximation
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APPLICATIONS TO LATTICE MODELS, CRITICAL

Simple cubic Ising model in zero field, magnetization vs temperat

T, ~4.512 = 4.515

T m (18 site CVM) m (MCRG by Talapov and Bléte)

3.4 0.8972562 0.8972440
3.5 0.8806417 0.8806366
3.6 0.8616750 0.8616735
3.7 0.8399256 0.8399255
3.8 0.8148173 0.8148161
3.9 0.7855490 0.7855416
4.0 0.7509519 0.7509251
4.1 0.7092094 0.7091249
4.2 0.6572414 0.6569722
4.3 0.5891051 0.5881361
4.4 0.4905811 0.4859045
4.5 0.3067063 0.2378014



Critical magnetization of the square Ising ferromagnet, By, approxir
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2D Ising model - B, series

B/v=0.1247(7)




Entropy of the triangular Ising antiferromagnet, By, approximat;

10




Region—based free energy approximations

Given a set R of regions, assign counting numbers a,, to regions, such th:
counting of nodes) every factor node and every variable node is countec

Z ay, = 1 YVa

ac€R,acx

Z a, =1 )

a€ERicx

Junction graph: R contains two types of regions, large regions a
regions, organized in a directed graph, with edges from large to smal
such that: (i) every edge connects a large region with a small region w
subset of the former; (ii) the subgraph of the regions containing a given
connected tree

Bethe: large regions are made of a factor node and its variable nod
regions are variable nodes.



CVM: R is closed under intersection, which satisfies the additional c
(single counting of every subcluster)

Z o =1 VB € R

aeR,[Ca

Bethe s a special case of CVM only if no factor node shares more
variable node with another factor node.

Be careful when applying Bethe to non—pairwise interactions, e.g.

si=+1, i=1,234



H,(s1,s2,53) = —hgs; — 5(82 + s3) — JS15283

Hy(s9, S3,84) = —hpsy — 5(82 + s3) — JS95354

S = S(al23) + S(b234) — S(23)
Spetme = S(a123) + S(b234) — S(2) — S(3)

1.5

h,=2,h=0.




THE SIMPLEST EXAMPLE

6 AUB=A
ANB=K

e No interactions between A’ = A\ K and B'= B\ K: H = H4(s4) -

e The probability factors: py = PAPB
PK
—H
e I g
= - —€
P A= el T 7
1y —H
e Ha
Rty
A\A
pB = ZPA =€ BZG_HA
A\B Al
PR =D Pa= ) pu Sy et

Al B’
e The cluster variation method with R = A, B, K is exact, since:

Sy=S4+Sp— Sk



ONE DIMENSIONAL SYSTEMS

e Strip of width /V:

AA
N
I
I
A

1T I

L
‘h‘hpa
ell
= = 5= 52 5
| Pa aell ael

o€l
The cluster variation method with R = [TUl is exact (L = 1: the Bet]
approximation is exact for the chain).



e In the thermodynamic limit L. — oo (open boundary conditions) trai
invariance is recovered:

F

Z — min EA: (pHHH + pnlnpr — pr 1np1)

Solving for prr we recover the transfer matrix formalism:

F

T In max Zp%/Q(s) exp [— Hy(s, Sl)]p%ﬂ(sl)

ZPI(S) =1



TREE-LIKE LATTICES (when Bethe = CVM)

e Bethe lattice (interior of a Cayley tree), NO LOOPS:

1 »

= ae‘L-}NKS ~ S = Z s Z (0 —1

Za_]_
1 Pa a€LINKS a€SITES
a€SITES

The cluster variation method with R = LINKS U SITES is exact (z
Bethe-Peierls approximation is exact for the simple chain).




e Cactus lattice (interior of a Husimi tree):

11 Po
P = acePLAQS N SA _ Z Sa B Z Sa

Pa a€PLAQS a€SITES

aG‘ShI:l:ES
The cluster variation method with R = PLAQS U SITES is exact.



REALIZABILITY

1+ CSiS;

1< ]
A J

pij(si; sj) =
Q. Is there a global p(s1, s9, s3) marginalizing to the above probabilitie;
A. Only for —1/3<e¢ <1

Q. Is this global p given by

p12(81, 82)]913(31, 33)]?23(82, 83)
p1(s1)p2(s2)ps(s3)

A. Only forc=0



Extending local thermodynamic states on a square lattice:
T SETTES SIS o
[2 k] () J
does not mean that
H Dlijki (Sis 855 Sk 51) Hpi_jl(sia S;) H]%(Si)
[ijkl) (i) i

is a good approximation to the true equilibrium distribution.

In general such a global p does not marginalize to pji;y, pij, pi and is
normalized = CVM free energy is not, in general, an upper bound.

The above is well defined only if

e odd correlations vanish

° <S¢Sk>(<z’k>> = <Sisj>%ij>



DISORDER POINTS

e [sing model with competitive interactions: for instance, on the square

H = —K1 Z SiS; — KQ Z SiS; — K4 Z $iSjSkSl,
(i7) ((27)) [27k]

with K (nearest neighbour coupling) > 0, K5 (next nearest neight
pling) < 0, Ky (plaquette coupling).

e Integrable case:

2 (€2K2 + €2K4)

cosh(2K7) = ¢

Free energy:
F = —Infexp(—Ky) + exp(Ky — 2K5)]



e The cluster variation method with R = {plaquettes and their subclu
with maximal clusters larger than the plaquette) is exact in the i
case.

The probability factors:

=] m( 11 pa>1 I ». =

a€PLAQS aeLINKS aeSITES
acPLAQS aeLINKS aeSITES

e Correlation function I'(z,y) = (s(zo, yo)s(zo + =, Yo + ¥)):
_exp(—4Ky) — cosh(2K7)
B sinh(2K7)

D(z,y) =gt g

e Many-site correlation functions can be calculated, e.g.
q = <3i3j3k31>[z'jkl]
€4K4 (1 _ €8K2) T 4€2K2 (€2K4 _ €2K2)

q = oKy (1 _ €8K2) + 4e2K2 (€2K4 4+ €2K2)

e Similar results can be derived for other two-dimensional models.



EATON MODEL of PROTEIN FOLDING

J

L L
H = Z Z hm’.fm‘, Lij = Hili‘k, L = O, 1
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Constraints: Tij = Ti+1,Lij—1

Probability factors in a CVM-like way due to constraints and locality o
tions



Local interactions =

(172) (273) P (L_17L)
M p
p({zi;}) = p@ .. pL-1)
pl) = prob of row j
pUi+l) = joint prob of rows j and j + 1

Constraints = (for instance)

pg‘g(O, 0)-- °p§?i)—k1(07 1)-- 'p(szl,L(la 1
pd(0) - pP Ol (1) - (1)

and similarly for pU7+h,

It follows

p({zi;}) = [ [ palza)™,

a€ER
where R = {square plaquettes, corners (on the diagonal), and their sub



CVM as an APPROXIMATION

e Leaving apart exactly solvable cases,
S~ aaS,
a€R
can be a reasonable approximation, but
1
a€ER
is not a probability.

e Upper bound: the CVM free energy is not an upper bound of the «
energy (contrast with mean field)

e Convexity: due to negative a, coefficients, convexity is no more gt
(and hence multiple minima can appear), unless

VSCR ) a,>0 Ry={a€R|3FCa,BeS

a€Rg



e Anyway, we are left with the problem of finding minima of F with norn
and compatibility constraints on probabilities:

Zpa(sa) =1 Va € R,

Pa(8a) = Z ps(sp) Va C f € R.
53\Sa



Algorithms to find min in Fyy

Constraints are always implemented through

e Lagrange multipliers, or
o cffective/cavity fields, or

® 11ESSages,

equivalently.

(G)BP: (generalized) belief propagation

1. Solve analytically w.r.t. the p,’s and

2. solve constraints w.r.t. messages by iteration.

Very fast, single loop algorithm, often not convergent.



NIM: natural iteration method
CCCP: concave—convex procedure

HAK: class of algorithms by Heskes, Albers and Kappen

1. Outer loop: update probabilities

2. Inner loop: update multipliers, or messages, to solve constraints

Slower, double loop algorithms, proof of convergence exists (except in a
cases).



Details: Bethe approximation (Ising example)

F = —Zh’z sipi(s ZJZJZSSJPU Si» 5j)

8iy5j
+Zzpwlnp2] Z Zl—l szhlpz
5ir5j
+Z/\ sz — 1 +Z)\U ZPU
5iy5j
+ Z Z pij(si) (pi — Zpij) + Z wii(si)(p; — Zpij:
) v % 5j S

Thouless—Anderson—Palmer (TAP)

To obtain the corresponding free energy from the Bethe free energy use
1+ s;m;
2

then solve analytically for the ¢;;’s and expand to second order in (.

L+ s;m; + sjm; + 8;8,¢;j
plj(SZ’ Sj) _ 1 1 i ] 1<) Z])

pz(Sz) =



Natural Iteration Method (INIM)

Define site probs as marginals of pair probs

=D IP I

]NNZ S

then solve stationarity w.r.t. pair probs to get the basic iterative egs.

1 1
pij(sia Sj) — exp [—1 — )\ij + ;hzsz + Zhij + JijSiSj
i ]

+/’Li,]< )"‘sz&y Zﬂzk __Zﬂjk

" kNN & kNN j
x [pi(sa)]' M7 [pi(s,)] 1™

At each iteration, find Lagrange mults, e.g. by iteration:

R pi<3i)
pij(si) = fij(si) + bln
/ ’ > Dij(si85)




Effective fields
Stationarity is solved by

pi(si) = exp |F; + (hH— Z hi,k) 3@]

kNN

ket keti
pij(Si,Sj) — exp Fij + <h1—|— Z hz,k) S; + hj + Z hj,k Sj +

i k NNz kNN j
and compatibility leads to
ki
hi — tanh™! [tanh hj + Z h;r | tanhJ;;
kNN j

The corresponding iterative algorithm is nothing but Belief propagatic
Cavity fields

Cavity bias (factor — variable): = h; ;

Cavity field (variable — factor): = Z hi



Belief propagation (BP)

Pair and site probs are rewritten in terms of messages:
pi(si) = exp(hisi) | | mjisi)
FNNi
Pij(siy sj) = exp (=A + hisi + hjsj + Jijsis;) X

X H mk_”'(Si) H mk_m-(sj).

ENNG ki ENNj, ki

The messages are related to Lagrange mults by

exp [ j(si)] = exp(his;)) || 'm/Hz‘(Si)-

As the effective fields, messages can be determined iteratively by impos
patibility

mj_i(si) Z exp (hjs; + Jijsis;) H my—;(s;).
Sj ENNj, k1

When convergent, fixed point is a minimum of the Bethe free energy.



Generalized belief propagation (GBP)

v¢a
Pa(8a) o [eXp <_ ZHa<3a)>] H H My 5(85)

aca BCa yePar(S3)

where

My5(85) = exp(fiy-5(55))

and f1,—5(ss) is the Lagrange multiplier for the constraint

Y @apalss) = ) aapalsy).

BCaER YCa€ER



Concave convex procedure (CCCP)

The free energy is split into concave + convex:
f[{pa}] — fvex[{pa}] + Fcave[{pa}]-

[terative equations are derived from:
vj:vex[{p (t+1) }] = _VFcave[{pg)}]'

In the Bethe case one chooses

Feavel{pi}] = Zzzz [pi(H; + Inp,)],

fvex[{pia pl]}] f fcave



Algorithm by Heskes, Albers and Kappen (HAK)

(t+1)

p = argmin, Fex(p, p”)

where p = {p,,a € R} and Fix(p,p’) is a convex function of p
properties

o Feex(p,p') > F(p)
o Feex(pp) = F(p)

The free energy decreases at each iteration



CP (conditional probability) algorithm

pjir(Tj, Tir) piji(z

pz’j{i’j’}(xiaxja{J? , 1)) = pij(@i, HZ

p]l (.T], €Zir ) i ij, pij"

p{i’j’}({xi’a l“j/}) = Z pij{z”j’}<$i7 Tj, {4, l“j/})

Tj T

Z Wij{i 5} xﬂx]?{x?,/?xj/})

Di CE‘ X
1 \* s j Z$Z 7 w@]{z’j’}(xlax]7{$ll7x]}

) piry({zin,

{apy)



CP fixed points are minima of the Bethe free energy

Analog to hard—spin mean—field

Converges more often than BP

Comparable with best double loop algorithms, slower (~ 1 order of m:
than BP



SPEED OF ALGORITHMS

1D Ising model in random field, exact solution through Bethe approxima
energy is convex over the constraint set (HAK cannot be distinguished
on this graph)
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2D Edwards—Anderson model with a fraction p of AF bonds: convergenc
for the BP algorithm with ferromagnetic initial condition

3 T T T T | T

— L=100
—=- L=50

2.5




CPU times for the 2d model: paramagnetic case (CP ~ HAK)
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CPU times for the 2d model: ferromagnetic case (CP ~ HAK)
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