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(Random) K-satisfiability

The K-sat problem deals with N boolean variables x;, 7 €
{1,...,N} and M *“clauses” a € {1,..., M}, which must be
verified simultaneously.

Each clause is built as the OR function of K (randomly
chosen) variables, which can be (randomly) negated or not.

For K > 3 the problem is NP-complete.

In physical terms, a boolean variable x; can be mapped onto
an Ising spin o; = +1,—1 if z; =TRUE,FALSE.

For each variable x; appearing in clause a, one introduces
a “coupling” J,; = +1,—1 if the variable appears as z;, z;,
so that o, = —J,_,; satisfies the clause.

Given a spin configuration, we can define an “energy” func-
tion, proportional to the number of violated clauses

FE = ZEQ(O'Q) X ZH(S(O'Z - Ja—>i)

a 1€a
where o, = {o;]i € a}. Satisfying assignments correspond
to ground states of a random lattice model with K site
interactions.

In the *“thermodynamic” |limit N — oo, for K = 3, there
exists a sat-unsat phase transition around a = M/N = 4.26.

Formulae in the vicinity of the transition are extremely hard
to solve, due to clustering phenomenon.



The Bethe approximation

The physical system we have defined has a hypergraph struc-
ture, which, for K = 3, looks like the following picture

Pi 3

For a random formula, the graph is locally treelike (loop size
is O(InN) for N — oo0), therefore a Bethe approximation is
expected to be satisfactory. The free energy reads

BF = Zzpa(aa) [ﬁEa(Ua) + |npa(0a)]
— ZBini(Ui> Inpi(oi),

where B; = C; — 1, C; being the connectivity of node z.

Minimization of this free energy with a message-passing scheme
gives rise to the algorithm known as Belief Propagation.



Belief Propagation (BP)

Probability distributions for single nodes and clauses can be
written as a function of messages

pi(oi) o H Ma—i(07),

acl

pa(0a) o e—BEa(aa)1_[,,7%._)@(02.)7

1€a

where messages must satisfy certain recursion relations

mi—>a(0i) — H mb—>i(0i)

ma_>i(0'i) X ZG_QE“(G“) H mj_m(aj)

Oa\i ]Ea\z

BP for satisfiability

For satisfiability we can write

Ea(O'a) = 2H5(0'i — Ja—n’);

whence

lim e_ﬁE“(aa) = 1- 0(o; — Ja—i).
Jim g ( )

Assuming that node-to-clause messages are normalized to unit

Y mia(e) = 1,

o=+=+1
the second recursion relation reads

maei(c) o 1 —=6(c— Jui) H Mj—a(Jasj).

jea\t




Warning Propagation (WP)

e Let us rewrite BP equations in terms of fields.
For Ising variables it is possible to write

mae—i(o;) = expPB(uq_;o; + const.) (1)

where wu,_,; are usually denoted as cavity biases. The con-
stant can be chosen to be zero, due to freedom in message
normalization. From the first recursion relation one obtains

Mi—a(0i) = expPhi—qoi (2)
where
hiwa = Z Up—i
bei\a

are usually denoted as cavity fields. The latter equation rep-
resents the first recursion relation for Ising fields. The second
relation can be obtained making use of expressions (1) and (2)
and taking the linear combination 2% _; oy(-):

Ug—ri = %Zgiﬁ_l InZexpB Z hj_mdj — Ea(O'a)
o Oa\i

jEa\i

e Let us now take the Iimit 8 — oo

1
Ug—si — 5 E g; nga_x E hj_mO'j — Ea(O'a)
o . jea\i

e Let us notice that, in case fields are O(B~!) (evanescent),
there is some loss of information.



WP for satisfiability

Let us evaluate the second recursion relation, considering the
sum over o; = +J, ;!

1
Ugsi = 5Ja_>i n;a.x Z hj—qo; — 2 H 5(0‘]' — Ja_>j)
o jea\i jea\i

— MmaxXx Z hj_mO'j

Oa\i
jea\t

To maximize the second term, we can choose

o; = sgn hj_m if hj_m 74: 0
o; = don't care if hjna =20

The same choice is ok also for the first term, with the ansatz
that cavity fields are integer (thanks to the prefactor 2), but

o; — —Ja_>j it hj_m =0

AS a consequence

1
Uoi = Su Z hja| — 2 'H'é(sgn hia — Jai)
j€Ea\i jEa\i
- Z |hj—>a‘ J
jEa\i
whence
Ug—i = —Jgoi H 5(Sgn hj—>a — Ja_>j)
jEa\i

These equations are consistent with the ansatz of integer fields.
In particular, us—; = 0,+1 while h;—., = 0,4+1,£2,...



Survey Propagation (SP) for satisfiability

In WP equations, only the sign of cavity fields is relevant,
therefore let us define new variables ( “‘cavity signs’)

Sisa = SQnh;_, = 0,=£1.

The equations become

Si—a — S9N 5 Up—si

Ugoi = —dJa—i H 0(Sjma — Ja—j).

e Let us build up SP as a statistics over field values for sat con-
figurations, according to the work of Braunstein, Mezard, and
Zecchina [cond-mat:0212002], but defining probability “pseudo-
distributions”

Qi—>a(3> = P {87;_>a =sV O} ;
where s = 0, +1, related to ordinary probability distributions
Pi—a(s) = P{sima=s}

by the following simple relations

Qi—a(0) = Pi..(0)
Qi—a(0) Pi~a(o) + P—4(0),

where ¢ = +1. In a completely analogous way, let us define
distributions and pseudo-distributions for cavity biases

Pa_n'(s)
Qa—i(s)

P {uq—; = s}
P {ug—i = sV O0}.



Let us consider the first recursion relation. Assuming that all
up_,; are statistically independent, and excluding unsat configu-
rations (the ones in which wu;_,; have different signs), it is possible
to write

Qi—>a(8) X H Qb—>i(8>

bei\a

Proportionality (not equality) is related to the fact that contra-
dictory configurations are forced to be excluded.

As far as the second recursion relation is concerned, let us ob-
serve that we can only have u,—; = 0,—J,—;. AS a consequence

Qa—>i(_<]a—>i) = 1
Qa—i( Jo—i) = Qu—i(0) = P,(0),
that is
Qa—i(s) = 1—[6(s) + (s — Jai)][1 — Pasi(0)],

where P,_,;(0) is the probability that at least one s;_.q, for j € a\,
is different from J,— ;. Still assuming statistical independence,
we have

Pri(0) = 1— ] PaCay).
jEa\i

Finally, going back to pseudo-distributions, we obtain

Qu—i(s) = 1 = [6(s) +6(s — Ju)] || [Qj—a(Ja—y) — Qj—a(0)]

JEb\?

— SP recursion relations degenerate into BP ones, if the s =0
(“jolly” ) state is forbidden.



Summary

This is what we have done so far:
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From double loop algorithm to “damped” BP

BP is efficient (single loop), but does not converge for o > 3.86,
where a full replica symmetry breaking (RSB) occurs.

— We have performed minimization with the algorithm pro-
posed by Heskes, Albers, and Kappen (HAK), a double loop
(less efficient) algorithm, which is nevertheless guaranteed to
converge [UAI-2003 proceedings pp. 313-320 (2003)].

At each main loop iteration, the HAK algorithm minimizes (by
message passing) a convex upperbound to the free energy

Zzpa(aa) BE.(04) + |npa(0a)}
_ZB sz(az) Inp;i(oi),

where B; are suitably chosen, and

_ B, —B; _
/BEa(Ua) — /BEa(Ua) - Z T Inpi(ai)-
t€a L

e Notice that p;(0;) are fixed during minimization of the upper-
bound (inner loop).

Experimentally, it turns out that (at least for satisfiability) the
double-loop procedure converges even for a single inner loop
iteration, giving rise to a numerical routine similar to ordinary
BP with “damping” coefficients D; = (B; — B;)/(1 + B; — B;).

The first update rule of ordinary BP can be rewritten as

pi(o) = Hmb—>z‘(0)

mi_m(a)



Damped BP replaces the former assignment by a geometric
average

pi(@) = pi(@)” [ mpi(e)* "

bes

Damped BP is found to converge even for site independent
damping coefficients D < D;, increasing speed, but reducing
stability. For D; = 0 we get back ordinary BP.

Also a linear average is found to work

pi(o) = Dpi(0)+(]—_D)Hmb—>i(0)

bes

Damped BP, applied to subsequently reduced (decimated) for-
mulae, finds the correct ground state up to a = 4.15, where the
hard (1-RSB) region begins.

Survey Propagation overcomes this problem [M. Mézard and
R. Zecchina, Phys. Rev. E 66, 056126 (2002)].

e Formally, SP introduces a third (jolly) state s; = 0, describing
spins that are not frozen.

e \We have reformulated SP in such a way that BP is reobtained
simply by forbidding the jolly state.

— The damping trick can be straightforwardly extended to SP,
with some advantages:

m robustness is improved in particular cases (small instances
close to the sat-unsat transition);

® 3 unique routine is able to solve hard formulae and *easy”
subformulae obtained by decimation.
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Experiments on random instances

Let us compare the results of damped BP (left) and damped SP
(right) for random 3-SAT instances with N = 10000 (dashed
lines) and N = 100000 (solid lines).

— Convergence is easily obtained up to a = 5 and beyond.
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Effects of damping

Let us analyze the effect of different damping coefficients on a
random instance with N = 10000 and a = 3.90.
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In this region:

— Ordinary BP (D = 0) does not converge, whereas damped
BP converges for some damping coefficient D > O;

— Satisfying assignments can be found by decimation and
repeated damped BP runs.



Conclusions

We have proposed a modified (damped) message-passing pro-
cedure for the satisfiability of random boolean formulae.

Such idea is based on a double-loop method, recently proposed
for the minimization of Bethe and Kikuchi free energies.

The method can be also extended to the framework of Survey
Propagation.

We obtain a unified message-passing scheme, with improved
convergence properties.

— AS BP, it can be used in the full RSB region, where ordinary
BP does not converge.

— As SP, it can be used in the “hard” region near the sat-
unsat transition. If the jolly state is forbidden, it also al-
lows to solve subformulae generated by “survey inspired
decimation™.



