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(Random) K-satisfiability

→ The K-sat problem deals with N boolean variables xi, i ∈
{1, . . . , N} and M “clauses” a ∈ {1, . . . , M}, which must be

verified simultaneously.

→ Each clause is built as the OR function of K (randomly

chosen) variables, which can be (randomly) negated or not.

→ For K ≥ 3 the problem is NP-complete.

→ In physical terms, a boolean variable xi can be mapped onto

an Ising spin σi = +1,−1 if xi =TRUE,FALSE.

→ For each variable xi appearing in clause a, one introduces

a “coupling” Ja→i = +1,−1 if the variable appears as xi, xi,

so that σi = −Ja→i satisfies the clause.

→ Given a spin configuration, we can define an “energy” func-

tion, proportional to the number of violated clauses

E =
∑

a

Ea(σa) ∝
∑

a

∏

i∈a

δ(σi − Ja→i)

where σa = {σi|i ∈ a}. Satisfying assignments correspond

to ground states of a random lattice model with K site

interactions.

→ In the “thermodynamic” limit N → ∞, for K = 3, there

exists a sat-unsat phase transition around α ≡ M/N ≈ 4.26.

→ Formulae in the vicinity of the transition are extremely hard

to solve, due to clustering phenomenon.



The Bethe approximation

The physical system we have defined has a hypergraph struc-

ture, which, for K = 3, looks like the following picture

For a random formula, the graph is locally treelike (loop size

is O(lnN) for N → ∞), therefore a Bethe approximation is

expected to be satisfactory. The free energy reads

βF =
∑

a

∑
σa

pa(σa) [βEa(σa) + ln pa(σa)]

−
∑

i

Bi

∑
σi

pi(σi) ln pi(σi),

where Bi = Ci − 1, Ci being the connectivity of node i.

Minimization of this free energy with a message-passing scheme

gives rise to the algorithm known as Belief Propagation.



Belief Propagation (BP)

Probability distributions for single nodes and clauses can be

written as a function of messages

pi(σi) ∝
∏

a∈i

ma→i(σi),

pa(σa) ∝ e−βEa(σa)
∏

i∈a

mi→a(σi),

where messages must satisfy certain recursion relations

mi→a(σi) =
∏

b∈i\a
mb→i(σi)

ma→i(σi) ∝
∑
σa\i

e−βEa(σa)
∏

j∈a\i
mj→a(σj)

BP for satisfiability

For satisfiability we can write

Ea(σa) = 2
∏

i∈a

δ(σi − Ja→i),

whence

lim
β→∞

e−βEa(σa) = 1−
∏

i∈a

δ(σi − Ja→i).

Assuming that node-to-clause messages are normalized to unit
∑

σ=±1

mj→a(σ) = 1,

the second recursion relation reads

ma→i(σ) ∝ 1− δ(σ − Ja→i)
∏

j∈a\i
mj→a(Ja→j).



Warning Propagation (WP)

• Let us rewrite BP equations in terms of fields.

For Ising variables it is possible to write

ma→i(σi) = expβ(ua→iσi + const.) (1)

where ua→i are usually denoted as cavity biases. The con-

stant can be chosen to be zero, due to freedom in message

normalization. From the first recursion relation one obtains

mi→a(σi) = expβhi→aσi (2)

where

hi→a =
∑

b∈i\a
ub→i

are usually denoted as cavity fields. The latter equation rep-

resents the first recursion relation for Ising fields. The second

relation can be obtained making use of expressions (1) and (2)

and taking the linear combination 1
2

∑
σi=±1 σi(·):

ua→i =
1

2

∑
σi

σiβ
−1 ln

∑
σa\i

expβ


 ∑

j∈a\i
hj→aσj − Ea(σa)


 .

• Let us now take the limit β →∞

ua→i =
1

2

∑
σi

σi max
σa\i





∑

j∈a\i
hj→aσj − Ea(σa)





• Let us notice that, in case fields are O(β−1) (evanescent),

there is some loss of information.



WP for satisfiability

Let us evaluate the second recursion relation, considering the

sum over σi = ±Ja→i:

ua→i =
1

2
Ja→i


max

σa\i





∑

j∈a\i
hj→aσj − 2

∏

j∈a\i
δ(σj − Ja→j)





−max
σa\i





∑

j∈a\i
hj→aσj






 .

To maximize the second term, we can choose

σj = sgnhj→a if hj→a 6= 0

σj = don′t care if hj→a = 0

The same choice is ok also for the first term, with the ansatz

that cavity fields are integer (thanks to the prefactor 2), but

σj = −Ja→j if hj→a = 0

As a consequence

ua→i =
1

2
Ja→i


 ∑

j∈a\i
|hj→a| − 2

∏

j∈a\i
δ(sgnhj→a − Ja→j)

−
∑

j∈a\i
|hj→a|


 ,

whence

ua→i = −Ja→i

∏

j∈a\i
δ(sgnhj→a − Ja→j)

These equations are consistent with the ansatz of integer fields.

In particular, ua→i = 0,±1 while hi→a = 0,±1,±2, . . .



Survey Propagation (SP) for satisfiability

In WP equations, only the sign of cavity fields is relevant,

therefore let us define new variables (“cavity signs”)

si→a
.
= sgnhi→a = 0,±1.

The equations become

si→a = sgn
∑

b∈i\a
ub→i

ua→i = −Ja→i

∏

j∈a\i
δ(sj→a − Ja→j).

• Let us build up SP as a statistics over field values for sat con-

figurations, according to the work of Braunstein, Mezard, and

Zecchina [cond-mat:0212002], but defining probability “pseudo-

distributions”

Qi→a(s)
.
= IP {si→a = s ∨ 0} ,

where s = 0,±1, related to ordinary probability distributions

Pi→a(s)
.
= IP {si→a = s}

by the following simple relations

Qi→a(0) = Pi→a(0)

Qi→a(σ) = Pi→a(σ) + Pi→a(0),

where σ = ±1. In a completely analogous way, let us define

distributions and pseudo-distributions for cavity biases

Pa→i(s)
.
= IP {ua→i = s}

Qa→i(s)
.
= IP {ua→i = s ∨ 0} .



Let us consider the first recursion relation. Assuming that all

ub→i are statistically independent, and excluding unsat configu-

rations (the ones in which ub→i have different signs), it is possible

to write

Qi→a(s) ∝
∏

b∈i\a
Qb→i(s)

Proportionality (not equality) is related to the fact that contra-

dictory configurations are forced to be excluded.

As far as the second recursion relation is concerned, let us ob-

serve that we can only have ua→i = 0,−Ja→i. As a consequence

Qa→i(−Ja→i) = 1

Qa→i( Ja→i) = Qa→i(0) = Pa→i(0),

that is

Qa→i(s) = 1− [δ(s) + δ(s− Ja→i)][1− Pa→i(0)],

where Pa→i(0) is the probability that at least one sj→a, for j ∈ a\i,
is different from Ja→j. Still assuming statistical independence,

we have

Pa→i(0) = 1−
∏

j∈a\i
Pj→a(Ja→j).

Finally, going back to pseudo-distributions, we obtain

Qa→i(s) = 1− [δ(s) + δ(s− Ja→i)]
∏

j∈b\i
[Qj→a(Ja→j)−Qj→a(0)]

→ SP recursion relations degenerate into BP ones, if the s = 0

(“jolly”) state is forbidden.



Summary

This is what we have done so far:



From double loop algorithm to “damped” BP

BP is efficient (single loop), but does not converge for α > 3.86,

where a full replica symmetry breaking (RSB) occurs.

→ We have performed minimization with the algorithm pro-

posed by Heskes, Albers, and Kappen (HAK), a double loop

(less efficient) algorithm, which is nevertheless guaranteed to

converge [UAI-2003 proceedings pp. 313-320 (2003)].

At each main loop iteration, the HAK algorithm minimizes (by

message passing) a convex upperbound to the free energy

βF̄ =
∑

a

∑
σa

pa(σa)
[
βẼa(σa) + ln pa(σa)

]

−
∑

i

B̃i

∑
si

pi(σi) ln pi(σi),

where B̃i are suitably chosen, and

βẼa(σa) = βEa(σa)−
∑

i∈a

Bi − B̃i

Ci
ln p̄i(σi).

• Notice that p̄i(σi) are fixed during minimization of the upper-

bound (inner loop).

Experimentally, it turns out that (at least for satisfiability) the

double-loop procedure converges even for a single inner loop

iteration, giving rise to a numerical routine similar to ordinary

BP with “damping” coefficients Di = (Bi − B̃i)/(1 + Bi − B̃i).

The first update rule of ordinary BP can be rewritten as

pi(σ) :=
∏

b∈i

mb→i(σ)

mi→a(σ) :=
pi(σ)

ma→i(σ)



Damped BP replaces the former assignment by a geometric

average

pi(σ) := pi(σ)Di

∏

b∈i

mb→i(σ)1−Di

Damped BP is found to converge even for site independent

damping coefficients D < Di, increasing speed, but reducing

stability. For Di = 0 we get back ordinary BP.

Also a linear average is found to work

pi(σ) := Dpi(σ) + (1−D)
∏

b∈i

mb→i(σ)

Damped BP, applied to subsequently reduced (decimated) for-

mulae, finds the correct ground state up to α ≈ 4.15, where the

hard (1-RSB) region begins.

Survey Propagation overcomes this problem [M. Mézard and

R. Zecchina, Phys. Rev. E 66, 056126 (2002)].

• Formally, SP introduces a third (jolly) state si = 0, describing

spins that are not frozen.

• We have reformulated SP in such a way that BP is reobtained

simply by forbidding the jolly state.

→ The damping trick can be straightforwardly extended to SP,

with some advantages:

robustness is improved in particular cases (small instances

close to the sat-unsat transition);

a unique routine is able to solve hard formulae and “easy”

subformulae obtained by decimation.



Convergence regions



Experiments on random instances

Let us compare the results of damped BP (left) and damped SP

(right) for random 3-SAT instances with N = 10000 (dashed

lines) and N = 100000 (solid lines).

→ Convergence is easily obtained up to α = 5 and beyond.
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Effects of damping

Let us analyze the effect of different damping coefficients on a

random instance with N = 10000 and α = 3.90.
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In this region:

→ Ordinary BP (D = 0) does not converge, whereas damped

BP converges for some damping coefficient D > 0;

→ Satisfying assignments can be found by decimation and

repeated damped BP runs.



Conclusions

We have proposed a modified (damped) message-passing pro-

cedure for the satisfiability of random boolean formulae.

Such idea is based on a double-loop method, recently proposed

for the minimization of Bethe and Kikuchi free energies.

The method can be also extended to the framework of Survey

Propagation.

We obtain a unified message-passing scheme, with improved

convergence properties.

→ As BP, it can be used in the full RSB region, where ordinary

BP does not converge.

→ As SP, it can be used in the “hard” region near the sat-

unsat transition. If the jolly state is forbidden, it also al-

lows to solve subformulae generated by “survey inspired

decimation”.


