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The Problem of Data Clustering

Given: Set of n objects x1, . . . , xn (e. g. points in Eu-
clidean space).

Clustering problem: Group x1, . . . , xn into k groups of
similar objects. These groups are called clusters.
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The Problem of Data Clustering

Given: Set of n objects x1, . . . , xn (e. g. points in Eu-
clidean space).

Clustering problem: Group x1, . . . , xn into k groups of
similar objects. These groups are called clusters.

Note: The number k of clusters is usually predefined, i. e.
an input parameter.
The similarity measure depends on the problem.
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Application: Image segmentation

Image segmentation problem:
Decompose a given image
into segments, i. e. regions
containing similar pixels.
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into segments, i. e. regions
containing similar pixels.

Example: Segments might be regions of the image de-
picting the same object.
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Application: Image segmentation

Image segmentation problem:
Decompose a given image
into segments, i. e. regions
containing similar pixels.

Example: Segments might be regions of the image de-
picting the same object.

Semantics Problem: How should we infer objects from
segments?
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Clustering Approach to Image
Segmentation

Clustering objects: Pixel color/greyscale values or local
image statistics (histograms).
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Method: Apply appropriate clustering algorithm to image
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Clustering Approach to Image
Segmentation

Clustering objects: Pixel color/greyscale values or local
image statistics (histograms).

Method: Apply appropriate clustering algorithm to image
data.

Result: Segments are connected regions assigned to the
same cluster.
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Problem Formalization

Notation:

• Objects: Data set (x1, . . . , xn) =: x
• Clusters: C1, . . . , Ck
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Problem Formalization

Notation:

• Objects: Data set (x1, . . . , xn) =: x
• Clusters: C1, . . . , Ck
• Encoding assignments: Use assignment vector

c ∈ {1, . . . , k}n, where

ci = α ⇔ xi ∈ Cα .
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Problem Formalization

Notation:

• Objects: Data set (x1, . . . , xn) =: x
• Clusters: C1, . . . , Ck
• Encoding assignments: Use assignment vector

c ∈ {1, . . . , k}n, where

ci = α ⇔ xi ∈ Cα .

Clustering solutions are defined by instances of the as-
signment vector c.
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Cost Function Idea

Problem: Clustering problem (“group similar objects”) re-
quires a notion of similarity.
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Cost Function Idea

Problem: Clustering problem (“group similar objects”) re-
quires a notion of similarity.

Approach: Formalize similarity in terms of a cost function
H, which assigns cost values to assignments.

H : {1, . . . , k}n → R≥0
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Cost Function Idea

Problem: Clustering problem (“group similar objects”) re-
quires a notion of similarity.

Approach: Formalize similarity in terms of a cost function
H, which assigns cost values to assignments.

H : {1, . . . , k}n → R≥0

Interpretation: Assignment of dissimilar objects to the
same cluster produces high costs.
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Cost Function-Based Clustering

Algorithmic solution: Compute assignment c∗ for which
costs H (c) are minimal:

c∗ = argmin
c∈{1,...,k}n

H (c|x)
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Cost Function-Based Clustering

Algorithmic solution: Compute assignment c∗ for which
costs H (c) are minimal:

c∗ = argmin
c∈{1,...,k}n

H (c|x)

Two basic problems:
1) Choice of cost function.
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H (c|x)

Two basic problems:
1) Choice of cost function. 2) Algorithmic optimization.
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Cost Function-Based Clustering

Algorithmic solution: Compute assignment c∗ for which
costs H (c) are minimal:

c∗ = argmin
c∈{1,...,k}n

H (c|x)

Two basic problems:
1) Choice of cost function. 2) Algorithmic optimization.

Advantage of cost function approach: Attempts to sep-
arate model design from algorithmic issues.
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Cost Function Optimization

Trade-off problem

• Simple cost functions: Easy to optimize, but not suit-
able to capture complex dependencies.
• Complex cost functions: Usually hard to optimize, due

to local minima.
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Cost Function Optimization

Trade-off problem

• Simple cost functions: Easy to optimize, but not suit-
able to capture complex dependencies.
• Complex cost functions: Usually hard to optimize, due

to local minima.

Example: A cost function with simple structure may e. g.
be of the form H (c|x) =

∑n
i=1 f (ci|xi). Costs are evalu-

ated separately for each object.
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Extension: incorporate neigh-
borhood information in clus-
ter assignment
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Extension: incorporate neigh-
borhood information in clus-
ter assignment

⇒ Object-wise evaluation of costs not sufficient,
more complex cost functions required.
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Unsupervised vs. supervised

Types of problems: Learning algorithms may be roughly
divided into two classes: Supervised and unsupervised
methods.

Learning Issues in Image Segmentation
Joachim M. Buhmann 10/75



Unsupervised vs. supervised

Types of problems: Learning algorithms may be roughly
divided into two classes: Supervised and unsupervised
methods.

Supervised methods: Methods which are “trained” on a
sample of labeled examples. “Training” describes e. g.
the adjustment of cost function or classifier parameters.
These are typically classification methods.
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Unsupervised vs. supervised

Types of problems: Learning algorithms may be roughly
divided into two classes: Supervised and unsupervised
methods.

Supervised methods: Methods which are “trained” on a
sample of labeled examples. “Training” describes e. g.
the adjustment of cost function or classifier parameters.
These are typically classification methods.

Clustering: Unsupervised methods; no previously la-
beled data available.
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What is Data Clustering?

Problem Specification: What is given?

• n objects and an object space
• a quality criterion to partition the object space
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What is Data Clustering?

Problem Specification: What is given?

• n objects and an object space
• a quality criterion to partition the object space

Classification: Partitioning of object space is exemplarily
defined for training objects by supervisor.
How to generalize the partition to new objects?
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What is Data Clustering?

Problem Specification: What is given?

• n objects and an object space
• a quality criterion to partition the object space

Classification: Partitioning of object space is exemplarily
defined for training objects by supervisor.
How to generalize the partition to new objects?

Clustering: Unsupervised partitioning of object space by
quality criterion! How to optimize cluster criterion?
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Generalization Problem in Classification

Underfitting
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Generalization Problem in Classification

Underfitting ←→ Overfitting

Complexity of Hypothesis Class has to be controlled ,
e.g., restricted to avoid overfitting.
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Generalization Problem in Classification

Underfitting ←→ Overfitting

Complexity of Hypothesis Class has to be controlled ,
e.g., restricted to avoid overfitting. Key Problem in ML,

Statistical and Computational Learning Theory
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Structure of the Tutorial
Part 1: Basic Concepts of data clustering
• K-means clustering, histogram/distributional clustering
• graph theoretic approaches: pairwise clustering, NCut
• path-based clustering and perceptual organization
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Structure of the Tutorial
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• path-based clustering and perceptual organization

Part 2: Optimization of clustering cost functionals
• stochastic optimization, simulated and deterministic annealing
• multiscale optimization

Learning Issues in Image Segmentation
Joachim M. Buhmann 13/75



Structure of the Tutorial
Part 1: Basic Concepts of data clustering
• K-means clustering, histogram/distributional clustering
• graph theoretic approaches: pairwise clustering, NCut
• path-based clustering and perceptual organization

Part 2: Optimization of clustering cost functionals
• stochastic optimization, simulated and deterministic annealing
• multiscale optimization

Part 3: Validation of clustering solutions
• agreement measure
• gap statistic
• stability analysis

Learning Issues in Image Segmentation
Joachim M. Buhmann 13/75



Data Types in Clustering Problems

• Unsupervised grouping or clustering : extracting hid-
den structure from data.
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den structure from data.

• Data Representations:
Vector data: n vectors in Rd.
Histogram data: n histograms in Rd.
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Data Types in Clustering Problems

• Unsupervised grouping or clustering : extracting hid-
den structure from data.

• Data Representations:
Vector data: n vectors in Rd.
Histogram data: n histograms in Rd.
Proximity data: n× n pairwise proximity matrix.
Much harder problem structure hidden in n2 pairwise relations.
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Part I: Clustering Principles
• Compactness

– K-Means
– Histogram Clustering
– Pairwise Data Cluster-

ing
(Average Association)

– Constant Shift Embed-
ding

– Parametric Distributional
Clustering

Learning Issues in Image Segmentation
Joachim M. Buhmann 15/75



Part I: Clustering Principles
• Compactness
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– Histogram Clustering
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ing
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– Constant Shift Embed-
ding
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Clustering

• Separation

– Average Cut
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Part I: Clustering Principles
• Compactness

– K-Means
– Histogram Clustering
– Pairwise Data Cluster-

ing
(Average Association)

– Constant Shift Embed-
ding

– Parametric Distributional
Clustering

• Separation

– Average Cut
– Normalized Cut

• Connectedness

– Mean Shift Clustering
– Single Linkage
– Path-Based Clustering
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Vectorial Data:

Clustering: find compact subsets by way of k-means .
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Vectorial Data:

Clustering: find compact subsets by way of k-means .

Raw data:
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Vectorial Data:

Clustering: find compact subsets by way of k-means .

Raw data:
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k-Means Problem

• Given d-dimensional sample vectors x1, . . . , xn ∈ Rd
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k-Means Problem

• Given d-dimensional sample vectors x1, . . . , xn ∈ Rd

• Assignment vector c ∈ {1, . . . , k}n

• Prototypes yν ∈ Rd (ν ∈ {1, . . . , k})
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k-Means Problem

• Given d-dimensional sample vectors x1, . . . , xn ∈ Rd

• Assignment vector c ∈ {1, . . . , k}n

• Prototypes yν ∈ Rd (ν ∈ {1, . . . , k})

Problem : Find c and yν that minimize

Hkm (c, y) =
n∑

i=1

||xi − yc(i)||2

Mixed combinatorial and continuous optimization problem
Learning Issues in Image Segmentation
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k-Means Algorithm
1. Choose k sample objects randomly as prototypes
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k-Means Algorithm
1. Choose k sample objects randomly as prototypes

2. Iterate :

• Keep prototypes yc(i) fixed and assign sample vectors
xi to nearest prototype

c(i) = arg min
ν∈{1,...,k}

||xi − yc(i)||2
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k-Means Algorithm
1. Choose k sample objects randomly as prototypes

2. Iterate :

• Keep prototypes yc(i) fixed and assign sample vectors
xi to nearest prototype

c(i) = arg min
ν∈{1,...,k}

||xi − yc(i)||2

• Keep assignments c(i) fixed and estimate prototypes

yν =
1
|Cν|

∑
i:c(i)=ν

xi
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k-Means Segmentation of LANDSAT Images

Oberwolfach  Nov 5-11 2001
Joachim M. Buhmann 9

CVPR Group Informatik III, Universität Bonn

Segmentation of LANDSAT-Data

6  :Data Vectorial +∈ Rix

k = 13

{ }kc ,...,1: 6 →+R
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Example Mixture Model

−1
0

1
2

3
4

5
6

7
8

9
−3 −2 −1 0 1 2 3 4 5 6 7

0

0.01

0.02

0.03

0.04

0.05

0.06

Learning Issues in Image Segmentation
Joachim M. Buhmann 20/75



Parametric Distributional Clustering

related to

histogram clustering

• Consider sites on a grid.
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Parametric Distributional Clustering
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histogram clustering

• Consider sites on a grid. Sites belong to clusters.
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Parametric Distributional Clustering

related to

histogram clustering

• Consider sites on a grid. Sites belong to clusters.
• Cluster memberships encoded by c ∈ {1, . . . , k}n

Learning Issues in Image Segmentation
Joachim M. Buhmann 21/75



Assumed Sampling Process

Mixture density pixel values local histogram
p (x| ν) {x ∈ Ni} nij, 1 ≤ j ≤ m
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Gaussian Mixture Models
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A single selection of Gaussian prototypes gα(x) is used
to create mixture densities p (x| ν) =

∑
α pα| νgα (x).
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Gaussian Mixture Models
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Generative Model

i nij

ci = p(X| )

Color values only depend on cluster membership!
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Maximum Likelihood Approach

Prior of assignment function c:

p (c| θ) =
n∏

i=1

pc(i)

Data likelihood for given c:

p (X| c, θ) =
n∏

i=1

 m∏
j=1

(∑̀
α=1

pα| c(i)G̃α(j)

)nij

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Cost Function for PDC

Cost function = negative log-likelihood:

H = −
∑

i

log pc(i) +
∑

j

nij log

(∑
α

pα| c(i)G̃α (j)

)
Interpretation as two-part coding scheme :
Expected codelength when encoding the cluster member-
ships and, based on that information, encoding the indi-
vidual color values.

Hermes, Zöller, Buhmann, 2002
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Information Bottleneck

Essential idea :

• Find efficient code X 7→ X̃ (X̃ is a codebook vector)
• Preserve relevant information about context variable Y
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Information Bottleneck

Essential idea :

• Find efficient code X 7→ X̃ (X̃ is a codebook vector)
• Preserve relevant information about context variable Y

Tradeoff is made explicit by cost functional

HIB = I
(
X; X̃

)
− λI

(
X̃; Y

)
,

where I(A; B) is the mutual information between two ran-
dom variables A and B, λ > 0.

Tishby et al., 1999
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Information Bottleneck (Tishby, Pereira, Bialek
IT Allerton Conf. 1999)

Object
space

A

G
F

E

D

C

B

Data

ny|x

x0 {A,B,C,...}
y0 {a,b,c,...}

Feature 
space

a

g

f

e

d

c

b

...

Minimize mutual 
information I(X;X)

constraint:
I(X;Y)>I0

Data representation
clusters

...
~X3

~

~Xk~X2

~X1

~

Xopt = argminX{I(X;X) - λ I(X;Y)}~ ~~
~
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PDC Segmentation

Learning Issues in Image Segmentation
Joachim M. Buhmann 29/75



PDC Segmentation
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PDC Resampling
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SAR Imagery

Polarimetric synthetic aperture radar image, L-band

original segmentation resampled
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Proximity Data

Clustering: find compact subsets in dissimilarity data

Raw prox. data:
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Proximity Data

Clustering: find compact subsets in dissimilarity data

Raw prox. data:
Permuted according to

cluster labels:
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Proximity Data: Example

• Abundant in many applications, e.g. linguistics, psychol-
ogy, molecular biology .

• Example: pairwise alignment scores between se-
quences.

130 140 150 160 170
SDEGSDLAHAVDAEQAFAEGAQAADAVEATPVEPVKVRERKRTFHYPDGLKDYVTAI

:: .: : ..: ...:: : .: : ::.:. ::::.::.::: .
LDE-------IDNETELVE--ETTDA----PKKPKK-REKKKIFHYPNGLEDYVHYL
120 130 140 150 160
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Proximity Data in Segmentation

SAR imagery analysed by Gabor filters

Empirical

feature

distribution

Test statistics

(�2, KS, JS Div.)

D
i j
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The Pairwise Clustering Cost Function

Idea: emphasize compact clusters by minimizing normal-
ized sum of intra-cluster dissimilarities

Hpc(c;D) =
k∑

ν=1

1
|Cν|

∑
(i,j):ci=cj=ν

Dij,

with assignment vector c ∈ {1, . . . , k}n and Cν = {i : ci = ν} .
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The Pairwise Clustering Cost Function

Idea: emphasize compact clusters by minimizing normal-
ized sum of intra-cluster dissimilarities

Hpc(c;D) =
k∑

ν=1

1
|Cν|

∑
(i,j):ci=cj=ν

Dij,

with assignment vector c ∈ {1, . . . , k}n and Cν = {i : ci = ν} .

Euclidean distances: if Dij = ‖xi − xj‖2 then

Hpc(c;X ) = Hkm =
k∑

ν=1

∑
i:ci=ν

‖xi − yν‖2 for means yν.
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Invariance Properties of Hpc

Hpc invariant under...
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Invariance Properties of Hpc

Hpc invariant under...

symmetrizing transformations:
D̃ij = (1/2)(Dij + Dji) ⇒ H̃ = H.

⇒ consider only symmetric matrices .
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Invariance Properties of Hpc

Hpc invariant under...

symmetrizing transformations:
D̃ij = (1/2)(Dij + Dji) ⇒ H̃ = H.

⇒ consider only symmetric matrices .

additive shifts of the off-diagonal elements D:
D̃ij = Dij + D0(1− δij) ⇒ H̃ = H + const.

⇒ shift does not influence assignments!
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Constant Shift Embedding

Define D̃ = D + λ0(1 − I) with smallest eigenvalue λ0 of centralized
matrix Dc

ij = Dij − 1
n

∑n
k=1 Dik − 1

n

∑n
k=1 Dkj − 1

n2

∑n
k,l=1 Dkl , then

Roth et al., IEEE-TPAMI 2003
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Define D̃ = D + λ0(1 − I) with smallest eigenvalue λ0 of centralized
matrix Dc

ij = Dij − 1
n

∑n
k=1 Dik − 1

n

∑n
k=1 Dkj − 1

n2

∑n
k,l=1 Dkl , then

1. D̃ij are squared Euclidean distances between vectors {xi}ni=1 ∈
Rn−1 ,

Roth et al., IEEE-TPAMI 2003
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∑n
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n

∑n
k=1 Dkj − 1

n2

∑n
k,l=1 Dkl , then

1. D̃ij are squared Euclidean distances between vectors {xi}ni=1 ∈
Rn−1 ,

2. optimal assignments for k-means based on {xi}ni=1 are identical to
those of the pairwise problem,

Roth et al., IEEE-TPAMI 2003
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Constant Shift Embedding

Define D̃ = D + λ0(1 − I) with smallest eigenvalue λ0 of centralized
matrix Dc

ij = Dij − 1
n

∑n
k=1 Dik − 1

n

∑n
k=1 Dkj − 1

n2

∑n
k,l=1 Dkl , then

1. D̃ij are squared Euclidean distances between vectors {xi}ni=1 ∈
Rn−1 ,

2. optimal assignments for k-means based on {xi}ni=1 are identical to
those of the pairwise problem,

3. {xi}ni=1 are explicitly found by eigenvalue decomposition.

Roth et al., IEEE-TPAMI 2003
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Constant Shift Embedding

Define D̃ = D + λ0(1 − I) with smallest eigenvalue λ0 of centralized
matrix Dc

ij = Dij − 1
n

∑n
k=1 Dik − 1

n

∑n
k=1 Dkj − 1

n2

∑n
k,l=1 Dkl , then

1. D̃ij are squared Euclidean distances between vectors {xi}ni=1 ∈
Rn−1 ,

2. optimal assignments for k-means based on {xi}ni=1 are identical to
those of the pairwise problem,

3. {xi}ni=1 are explicitly found by eigenvalue decomposition.

4. optimal approximative vectors (in least-squares sense): project-
ing on leading eigenvectors (kernel PCA ).

Roth et al., IEEE-TPAMI 2003
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Clustering of Bacterial GyrB Sequences
• Objects: 84 amino acid sequences from 5 genera.
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Clustering of Bacterial GyrB Sequences
• Objects: 84 amino acid sequences from 5 genera.

• Representations: pairwise alignment scores

• k-means clustering: denoised (5 dimensions):
3 misclassifications w.r.t. known ground truth,
original (83 dimensions): 17 misclassifications.

Ideal original denoised
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Globin Proteins: Cluster Solution

Interpretation: biologically relevant clusters!
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Normalized Cut

Minimize the cut, while maximize the association

HNCut (A,B) =
cut(A,B)

assoc(A, V )
+

cut(B,A)
assoc(B, V )

Shi & Malik, 2000
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Normalized Cut

Minimize the cut, while maximize the association

HNCut (A,B) =
cut(A,B)

assoc(A, V )
+

cut(B,A)
assoc(B, V )

With partition vector c ∈ {−1, 1}n and association matrix
W = (w)ij:

HNCut(c,W ) =

∑
ci>0,cj<0−wijcicj∑

ci>0
∑n

j=1 wij
+

∑
ci<0,cj>0−wijcicj∑

ci<0
∑n

j=1 wij

Shi & Malik, 2000
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Relaxation of NCut

Minimize Rayleigh quotient

min
c

HNCut(c,W ) = min
y

yt(D −W )y
yty

subject to y ∈

{
1,
−
∑

xi>0 di∑
xi<0 di

}

where D = diag(d1, . . . , dn) and di =
∑n

j=1 wij

x ∈ [−1, 1]n is the relaxation of the variable vector c ∈ {−1, 1}n.
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Example Normalized Cut

Shi & Malik, 2000
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Part II: Optimization Methods

Given: cost function to rank different object partitions

Robustness: cost function depends on noisy data

⇒ partition with minimal costs is a r.v. of noisy data
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Part II: Optimization Methods

Given: cost function to rank different object partitions

Robustness: cost function depends on noisy data

⇒ partition with minimal costs is a r.v. of noisy data

⇒ estimate clustering solution in a noise insensi-
tive / robust way!
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Part II: Optimization Methods

Given: cost function to rank different object partitions

Robustness: cost function depends on noisy data

⇒ partition with minimal costs is a r.v. of noisy data

⇒ estimate clustering solution in a noise insensi-
tive / robust way!

Candidate Solutions: typical or averages of partitions
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The Maximum Entropy Principle

Principle: (Jaynes 1957) Estimate expectation values
of optimization variables which are maximally non-
committal with respect to missing data.
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The Maximum Entropy Principle

Principle: (Jaynes 1957) Estimate expectation values
of optimization variables which are maximally non-
committal with respect to missing data.

Strategy: (i) Stochastic search through space of parti-
tions with expected costs E{H} ≤ const(T ).
(ii) Estimate or approximate probability distribution with
E{H} ≤ const(T )
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The Maximum Entropy Principle

Principle: (Jaynes 1957) Estimate expectation values
of optimization variables which are maximally non-
committal with respect to missing data.

Strategy: (i) Stochastic search through space of parti-
tions with expected costs E{H} ≤ const(T ).
(ii) Estimate or approximate probability distribution with
E{H} ≤ const(T )

Algorithm: Markov Chain Monte Carlo or Mean Field Ap-
proximation
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Metropolis Sampler for Clustering

Input: n objects, cost function H(c)
Output: partition c : objects → clusters
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Metropolis Sampler for Clustering

Input: n objects, cost function H(c)
Output: partition c : objects → clusters

MCMC Algorithm:
1. initialize c(i) ∈ {1, . . . , k} randomly;
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Input: n objects, cost function H(c)
Output: partition c : objects → clusters

MCMC Algorithm:
1. initialize c(i) ∈ {1, . . . , k} randomly;
2. draw c′ ∼ Q(c); // Q(c): proposal distribution
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Metropolis Sampler for Clustering

Input: n objects, cost function H(c)
Output: partition c : objects → clusters

MCMC Algorithm:
1. initialize c(i) ∈ {1, . . . , k} randomly;
2. draw c′ ∼ Q(c); // Q(c): proposal distribution
3. p← min{exp(−(H(c′)−H(c))/T ), 1};
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Metropolis Sampler for Clustering

Input: n objects, cost function H(c)
Output: partition c : objects → clusters

MCMC Algorithm:
1. initialize c(i) ∈ {1, . . . , k} randomly;
2. draw c′ ∼ Q(c); // Q(c): proposal distribution
3. p← min{exp(−(H(c′)−H(c))/T ), 1};
4. draw b ∼ Bernoulli(p);
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Metropolis Sampler for Clustering

Input: n objects, cost function H(c)
Output: partition c : objects → clusters

MCMC Algorithm:
1. initialize c(i) ∈ {1, . . . , k} randomly;
2. draw c′ ∼ Q(c); // Q(c): proposal distribution
3. p← min{exp(−(H(c′)−H(c))/T ), 1};
4. draw b ∼ Bernoulli(p);
5. if b = 1 then c← c′;
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Metropolis Sampler for Clustering

Input: n objects, cost function H(c)
Output: partition c : objects → clusters

MCMC Algorithm:
1. initialize c(i) ∈ {1, . . . , k} randomly;
2. draw c′ ∼ Q(c); // Q(c): proposal distribution
3. p← min{exp(−(H(c′)−H(c))/T ), 1};
4. draw b ∼ Bernoulli(p);
5. if b = 1 then c← c′;
6. t← t + 1; if ¬ converged goto 2 else stop
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Metropolis Sampler for Clustering

Input: n objects, cost function H(c)
Output: partition c : objects → clusters

MCMC Algorithm:
1. initialize c(i) ∈ {1, . . . , k} randomly;
2. draw c′ ∼ Q(c); // Q(c): proposal distribution
3. p← min{exp(−(H(c′)−H(c))/T ), 1};
4. draw b ∼ Bernoulli(p);
5. if b = 1 then c← c′;
6. t← t + 1; if ¬ converged goto 2 else stop

Variants: Gibbs sampling, importance sampling, (competitive!?)
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Maximum Entropy Distribution

ME Distribution: P? = arg maxP{S(P) : E{H} = const(T )}
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Maximum Entropy Distribution

ME Distribution: P? = arg maxP{S(P) : E{H} = const(T )}

Free Energy: F (P(θ))︸ ︷︷ ︸
free energy

:= EP(θ){H} − T S(P(θ))︸ ︷︷ ︸
entropy
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Maximum Entropy Distribution

ME Distribution: P? = arg maxP{S(P) : E{H} = const(T )}

Free Energy: F (P(θ))︸ ︷︷ ︸
free energy

:= EP(θ){H} − T S(P(θ))︸ ︷︷ ︸
entropy

• free energy minimization equals maximization of entropy
S(P) = −

∑
c∈C P(θ) log P(θ) with fixed expected costs.

∂

∂P
F

∣∣∣∣∑
P=1

= H(c) + T log P(θ) + const = 0
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Maximum Entropy Distribution

ME Distribution: P? = arg maxP{S(P) : E{H} = const(T )}

Free Energy: F (P(θ))︸ ︷︷ ︸
free energy

:= EP(θ){H} − T S(P(θ))︸ ︷︷ ︸
entropy

• free energy minimization equals maximization of entropy
S(P) = −

∑
c∈C P(θ) log P(θ) with fixed expected costs.

∂

∂P
F

∣∣∣∣∑
P=1

= H(c) + T log P(θ) + const = 0

⇒ Gibbs distribution P(θ̃) = exp
(
−
(
H(c)− F (θ̃)

)
/T
)
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Algorithm Design for Maximum Entropy
Estimation

Calculate the Gibbs distribution of object partitions.
⇒ expectation values of optimization variables
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Estimation

Calculate the Gibbs distribution of object partitions.
⇒ expectation values of optimization variables

Maximize entropy w.r.t. additional free parameters.
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Algorithm Design for Maximum Entropy
Estimation

Calculate the Gibbs distribution of object partitions.
⇒ expectation values of optimization variables

Maximize entropy w.r.t. additional free parameters.

EM-like Iteration: Both steps are iterated until conver-
gence to a local maximum of the entropy is achieved.

Learning Issues in Image Segmentation
Joachim M. Buhmann 47/75



Phase Transitions in K-means Clustering

1-dim. mixture model; track centroids as a function of temperature.
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Phase Transitions in K-means Clustering

1-dim. mixture model; track centroids as a function of temperature.
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EM Update Scheme for PDC

E-step hiν = − log pν −
∑

j nij log
(∑

α pα| νG̃α (j)
)

qiν = E [Miν] ∝ exp
(
−hiν

T

)
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EM Update Scheme for PDC

E-step hiν = − log pν −
∑

j nij log
(∑

α pα| νG̃α (j)
)

qiν = E [Miν] ∝ exp
(
−hiν

T

)
M-step pν = 1

n

∑
i qiν

No closed formula for pα| ν, nor for µα! We
iteratively optimize pairs pα1| ν, pα2| ν until
convergence. Interval bisection is used to
optimize Gaussian means µα.
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Cooling Dynamics of PDC

Level of randomness decreases while
lowering the computational temperature.
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Cooling Dynamics of PDC

Level of randomness decreases while
lowering the computational temperature.
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Phase Transitions in Segmentation
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Scales in Vision and their Coupling
Coarsening

Variable Space

fine

coarse

fine

coarse

Resolution Pyramid
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Scales in Vision and their Coupling
Coarsening

Variable Space
Coarsening

Optimization Criterion

fine

coarse

fine

coarse

Resolution Pyramid Raising Temperature
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Scales in Vision and their Coupling
Coarsening

Variable Space
Coarsening

Optimization Criterion
Coarsening
Model Order

fine

coarse

fine

coarse

Resolution Pyramid Raising Temperature Decr. Number of
Segments
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Multi-Scale Optimization

• Coarser set of image sites
S` = {s`

1, . . . , s
`
n`
}

• Prolongation operator P` :
S`+1 → S` defines map
between two resolution
levels

• Multiscale Operator H`+1(Sl+1) = Γ(H`) = H`(P (S`+1))
maps the value of the objective function
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Time Acceleration
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Example Multiscale optimization
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Part III: Cluster Validation

• The Problem of Cluster Validity
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• The Problem of Cluster Validity

• Complexity-based Validation (Rissanen, 1978; Schwarz, 1978).

• Cross-Validated Likelihood (e.g. P. Smyth, 1998)

• The Gap Statistic (Tibshirani, Walther, Hastie, 2001)

• Stability-based Validation (Lange, Braun, Roth, Buhmann, 2002)
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The Problem of Cluster Validity

Clustering algorithms always impose structure on data.
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The Problem of Cluster Validity

Clustering algorithms always impose structure on data.

(a) Inappropriate model order. (b) Inappropriate model type.
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Validation Methods ...

• ... are procedures and concepts for the quantitative and
objective assessment of clustering solutions.
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Validation Methods ...

• ... are procedures and concepts for the quantitative and
objective assessment of clustering solutions.
• ... evaluate a specific quality measure.
• ... can be external (= cmp. with ground-truth) or internal.
• ... can be used for model selection.

Important Question:
What is the appropriate number of clus-
ters k for my data?

Learning Issues in Image Segmentation
Joachim M. Buhmann 58/75



Validation Methods ...

• ... are procedures and concepts for the quantitative and
objective assessment of clustering solutions.
• ... evaluate a specific quality measure.
• ... can be external (= cmp. with ground-truth) or internal.
• ... can be used for model selection.

Important Question:
What is the appropriate number of clus-
ters k for my data?

General approach: Measure quality for different k!
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Complexity-based Validation

Add a complexity term to the neg. log-likelihood in
model-based clustering!

Learning Issues in Image Segmentation
Joachim M. Buhmann 59/75



Complexity-based Validation

Add a complexity term to the neg. log-likelihood in
model-based clustering!
Occam’s razor:

Choose the model that provides the
shortest description of the data

Learning Issues in Image Segmentation
Joachim M. Buhmann 59/75



Complexity-based Validation

Add a complexity term to the neg. log-likelihood in
model-based clustering!
Occam’s razor:

Choose the model that provides the
shortest description of the data

Idea formalized e.g. by
• Rissanen’s Minimum Description Length .
• Schwartz’s Bayesian Information Criterion .
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Underlying Principle
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The (neg.) log-likelihood decreases with increasing model
complexity. Correct this with a complexity penalty.
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The (neg.) log-likelihood decreases with increasing model
complexity. Correct this with a complexity penalty.
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Minimum Description Length (Rissanen,1978)

MDL minimizes the overall description length of the data
where the description consists of the data and the model
parameters.

k̂ := argmin
1≤k≤Kmax

− log(p̂(X | Φ̂k))︸ ︷︷ ︸
negative loglikelihood

+
1
2
k′ log n︸ ︷︷ ︸

complexity penalty


where k′ is the number of independent parameters in the
model Φk.
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BIC Validation of a Mixture
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Stability-based Validation (Lange, Braun, Roth, JB,2002)

• Many validation methods incorporate a structural bias!
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Stability-based Validation (Lange, Braun, Roth, JB,2002)

• Many validation methods incorporate a structural bias!

• What to do if no additional a priori knowledge available?

• Main idea:

Stability:
Solutions on two data sets from the
same source should be similar.
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Stability
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Two Sample Scenario

• General procedure:
(i) Draw two data sets from the same source.
(ii) Cluster both data sets.
(iii) Compute agreement

Stability := expected agreement of the solutions.
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Two Sample Scenario

• General procedure:
(i) Draw two data sets from the same source.
(ii) Cluster both data sets.
(iii) Compute agreement

Stability := expected agreement of the solutions.

• In practical applications: only one data set available.
(i) Estimate expected agreement by resampling.
(ii) Cluster entire data set with optimal k.
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Measuring disagreement

Two labelings on one data set:
disagreement := Fraction of differently labeled objects.
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Measuring disagreement

Two labelings on one data set:
disagreement := Fraction of differently labeled objects.

3 problems:

1. Clustering solutions are labelings of disjoint sets.
2. Labeling is unique only up to permutation π ∈ Sk.
3. Fraction of differently labeled points is sensitive

to model complexity:
50% @ k = 2→ totally random,
50% @ k = 10→ often acceptable.
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Stability Measure: Labelings on disjoint sets

Extend solution from set A to B
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Stability Measure: Labelings on disjoint sets

Extend solution from set A to B by

(i) training a predictor on A

(ii) predicting labels on B

(iii) compare clustering solutions on B

Choose predictor according to meta-
principle .
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Stability Measure: Breaking Permutation
Symmetry

• Labeling unique only up to π ∈ Sk.
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Stability Measure: Breaking Permutation
Symmetry

• Labeling unique only up to π ∈ Sk.

• Solution: Stability index S :=
expected minimal disagreement
over all π ∈ Sk.
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Stability Measure: Breaking Permutation
Symmetry

• Labeling unique only up to π ∈ Sk.

• Solution: Stability index S :=
expected minimal disagreement
over all π ∈ Sk.

• Hungarian method O(k3).
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Stability Measure: Different Values of k

• Stability costs are scale-sensitive to k.
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Stability Measure: Different Values of k

• Stability costs are scale-sensitive to k.

• Solution: Normalize by maximal stability costs:
Sk(α) ≤ 1− 1/k

For the random predictor % it holds:
Sk(%)→ 1− 1/k as n→∞.
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Stability Measure: Different Values of k

• Stability costs are scale-sensitive to k.

• Solution: Normalize by maximal stability costs:
Sk(α) ≤ 1− 1/k

For the random predictor % it holds:
Sk(%)→ 1− 1/k as n→∞.

 Normalize S 7→ Sk(α)
Sk(%)

.
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The Final Stability Measure

1
n

n∑
i=1

1{α(X)i 6= g(Xi;X′, α(X′))}

• Disagreement rate
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The Final Stability Measure

min
π∈Sk

1
n

n∑
i=1

1{α(X)i 6= π ◦ g(Xi;X′, α(X′))}

• Disagreement rate
• Permutation symmetry breaking

Learning Issues in Image Segmentation
Joachim M. Buhmann 70/75



The Final Stability Measure

EX,X′

(
min
π∈Sk

1
n

n∑
i=1

1{α(X)i 6= π ◦ g(Xi;X′, α(X′))}

)

• Disagreement rate
• Permutation symmetry breaking
• Expectation w.r.t. two samples from same source

Learning Issues in Image Segmentation
Joachim M. Buhmann 70/75



The Final Stability Measure

1
S(%)

EX,X′

(
min
π∈Sk

1
n

n∑
i=1

1{α(X)i 6= π ◦ g(Xi;X′, α(X′))}

)

• Disagreement rate
• Permutation symmetry breaking
• Expectation w.r.t. two samples from same source
• Normalize by S(%).
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The Final Stability Measure

1
S(%)

EX,X′

(
min
π∈Sk

1
n

n∑
i=1

1{α(X)i 6= π ◦ g(Xi;X′, α(X′))}

)

• Disagreement rate
• Permutation symmetry breaking
• Expectation w.r.t. two samples from same source
• Normalize by S(%).
• Estimate EX,X′ by resampling
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Results on Toy Data
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Biological Applications

• Tumor Class Discovery from gene expression data:
Identify different types of Leukemia
72 Tumor-Samples, 100 selected genes,
“ground truth”: 2 or 3 classes
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Biological Applications

• Tumor Class Discovery from gene expression data:
Identify different types of Leukemia
72 Tumor-Samples, 100 selected genes,
“ground truth”: 2 or 3 classes

• Clustering of Proteins:
Find groups of similar proteins
Pairwise Data
1200 Globins or Globin-like proteins
“ground truth”: 5 classes
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Class Discovery
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• Two candidates: k = 3 and k = 2
• Approx. 91 % of the known classes
found.

G
en

es

Samples

ALL B−Cell AML ALL T−Cell
True

Pred

Learning Issues in Image Segmentation
Joachim M. Buhmann 73/75



Clustering of Globins
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• Two candidates: k = 3 und k = 9
• Separation of hemoglobin-α and hemoglobin-β from the

remaining globins.
Biologically plausible clustering!
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Stability: Summary

• Stability Principle: Solutions for two data sets from the
same source should be similar.

• No additional assumptions about the structure of so-
lutions.

• Good performance on experimental data sets.
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