Tricks of the trade for training SVMs

Gökhan H. Bakır \& Olivier Chapelle
Max Planck Institute for Biological Cybernetics
Tübingen, Germany
\{goekhan.bakir,olivier.chapelle\}@tuebingen.mpg.de

Overview

- Problem Statement
- Tricks in the primal
- Tricks in the dual
- Conjecture

Why are we sitting here?

SVM can not watch TV.

- Leon Bottou -

Problem Statement

Why?

In kernel methods the representer theorem is your best friend and your worst enemy.

Theorem 1 (Representer Theorem). Under some mild conditions ($f \in R K H S, \ldots$) the solution f^{*} of the problem

$$
\begin{equation*}
f^{*}=\underset{f}{\arg \min } \sum_{i=1}^{N} \ell\left(y_{i}, x_{i}, f\left(x_{i}\right)\right)+\Omega[f] \tag{1}
\end{equation*}
$$

has the form:

$$
\begin{equation*}
f^{*}(x)=\sum_{i=1}^{N} \alpha_{i} k\left(x_{i}, x\right) \tag{2}
\end{equation*}
$$

See (Kimeldorf and Wahba, 1971; Schölkopf et al., 2000)
Remark 2. Does not imply uniqueness of α.

Overview

- Problem Statement
- Tricks in the primal
- Tricks in the dual
- Conjecture

Linear SVM in the primal

We want to minimize (with an L_{2} penalization of the errors)

$$
\mathbf{w}^{2}+C \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)\right)^{2} .
$$

\longrightarrow Forget about dual problem, Lagrange multipliers, Kuhn-Tucker conditions, ...
\longrightarrow Just minimize it directly; for instance Newton steps:

$$
\mathbf{w}^{t+1}=\mathbf{w}^{t}-\left(H^{t}\right)^{-1} \nabla^{t}
$$

$$
\begin{aligned}
& \text { Gradient: } \quad \nabla_{p}^{t}=2 w_{p}-2 C \sum_{i=1}^{n} y_{i} x_{i p} \max \left(0,1-y_{i}\left(\mathbf{w}^{t} \cdot \mathbf{x}_{i}+b^{t}\right)\right) \\
& \text { Hessian: } \quad H_{p q}^{t}=2 \quad+2 C \sum_{i=1}^{n} x_{i p} x_{i q} 1_{y_{i}\left(\mathbf{w}^{t} \cdot \mathbf{x}_{i}+b^{t}\right) \leq 1}
\end{aligned}
$$

Very simple to implement and efficient: complexity is $O\left(n d^{2}\right)$ per step and usually convergence is reached after only couple of steps.

Experimental comparison with LSVM [Mangasarian '00] - fixpoint based approach

- LSVM has been specially designed to train linear SVMs

Adult dataset, stop when precision on the obj fun $<10^{-7}$.

Fixed $C=0.05$ (as in original paper).
Complexity is linear for both methods.
Better constant for Newton.

6414 points.
Convergence problems with LSVM for large values of C

No need of duality theory!
Simpler is better : with a linear SVM, when the number of points is larger than the dimension, straightforward minimization is the best !

Non-linear SVMs

- From the representer theorem, we know that optimal solution is of the form

$$
f(\mathbf{x})=\sum_{i=1}^{n} \beta_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)+b
$$

- Minimize directly over $\boldsymbol{\beta} \in \mathbb{R}^{n}, b \in \mathbb{R}$,

$$
\underbrace{\boldsymbol{\beta}^{\top} K \boldsymbol{\beta}}_{\text {regularizer }}+C \underbrace{\sum_{i=1}^{n} \max \left(0,1-y_{i}\left([K \boldsymbol{\beta}]_{i}+b\right)\right)^{2}}_{\text {loss }}
$$

\longrightarrow Again, no need of duality theory.

Complexity

- Let $n_{\text {SV }}$ be the number of support vectors, i.e. the points for which the gradient of the loss is non zero.
- Using the Woodbury formula to invert the Hessian, the complexity of performing one Newton step on the $\boldsymbol{\beta}$ is $O\left(n_{\mathrm{sv}}\left(n+n_{\mathrm{Sv}}{ }^{2}\right)\right)$
\longrightarrow Not surprisingly, exactly the same as standard SVM solvers.
- Can be large if n_{SV} is large.

Trick

- Fix the complexity (both in the learning and computational sense) by choosing a subset of points on which to expand the solution.
- Let $S \subset[1 \ldots n]$. Minimize

$$
\boldsymbol{\beta}_{S}^{\top} K_{S S} \boldsymbol{\beta}_{S}+C \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(K_{i, S} \boldsymbol{\beta}_{S}+b\right)\right)^{2} .
$$

- If $|S|=k$, the complexity is $O\left(k^{2} n\right)$.
- Very similar to RSVM [Mangasarian '00].
- In feature space, this is equivalent to train a linear SVM after projection of points on the subspace spanned by $\left\{\Phi\left(\mathbf{x}_{i}\right)\right\}_{i \in S}$.
- If the "effective dimension" of the feature space (or the effective rank of the Gram matrix) is around $k \longrightarrow$ not a big loss in approximation.
- If it's larger, loss in accuracy, but computational speed-up.
- Good for data mining: n is very large and one does not want to find the best solution, but one within a fixed amount of time.

Experimental results on the Adult dataset, RBF kernel.

22697 points; results averaged over 10 repetitions Having more than 100 basis function does not help a lot (note that the dimension of the data is 123).

The first 100 eigenvalues of the kernel matrix retain 89% of the spectrum.

Comparison with standard SVM learning: Can reduce the training time of several orders of magnitude, without too much loss in accuracy.

Remarks

- Objective function and test error are strongly related
\longrightarrow we are in an underfitting situation
- The Adult dataset is quite noisy \longrightarrow no need for an accurate solution (and S can be small).
- For some other datasets (e.g. Mnist), need for accuracy.

Greedy choice of the subset

- Idea $=$ find the subset of size k such that the objective function computed with this subset is small as possible.
- First attempt: given the current subset, the corresponding solution and a candidate to be added in the subset, perform a virtual Newton step and see how much the objective function would decrease.
- Select the best candidate among of a pool of p of them and iterate. Complexity is $O(n k p)$ per iteration.

Experiments on Mnist dataset, polynomial kernel of degree 5, 10000 points, class 0 vs the rest.

At each iteration, the objective function is minimized and a new point is selected to be in the subset according to

Greedy the method explained above
Random

Unsupervised the maximum distance in feature space from the linear subspace spanned by the the current subset.

Margin the minimum distance from the decision boundary.

- Speed-up: discarding the points which are not support vectors, (i.e. $y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right) \geq 1$), the algorithm is the same as kernel ridge regression.
\longrightarrow A fast rank one update is possible to recompute the solution after a basis point has been added.
- Final algorithm:
for $i=1$ to k do
if i is a power of 2 then
Train the SVM on the current subset end if
Choose a random set of p candidates
Select the one which decreases the most the objective function
Update the solution (assuming the set of SV does not change)
end for
- Overall complexity is $\left.O\left(k^{2} n p\right)\right)$

Multiclass experiment

- Mnist, full training set (60k points), one vs the rest.
- Use the same subset expansion for the 10 classifiers.
- Points in the subset are chosen such that the sum of the objective function is minimized.

Take home message:
This enables the user to choose the accuracy / time complexity trade-off himself.

Overview

- Problem Statement
- Tricks in the primal
- Tricks in the dual
- Conjectures

Where do we spend our money in the dual formulation?

Consider a problem with noise.

\Rightarrow All outliers and points in overlapping class regions will end up as support vector.
What are the problems if n increases?

Steinwart (Steinwart, 2004) showed that k - the number of SVs increases linearly with the number n of training examples. More specifically,

$$
\begin{equation*}
k / n \longrightarrow 2 \mathcal{B}_{K} \tag{3}
\end{equation*}
$$

where \mathcal{B}_{K} is the bayes risk.

The noise is dominating the cache!

Select patterns

Idea: Carefully select subset of data!

Condensation and Editing

A trick from nearest neighbors training:

Condensation

Editing

Cross-Training

Reconsider Condense and MultiEdit:

Condense can be understood as: If $\mathbb{E}_{S}\left[y_{i} f_{S}\left(x_{i}\right)\right]>1$, then remove it. SVM does this already.
MultiEdit can be understood as: If $\mathbb{E}_{S}\left[y_{i} f_{S}\left(x_{i}\right)\right]<0$, then remove it. This is what we want.

We need to estimate the margin location $\mathbb{E}_{S}\left[y_{i} f_{S}\left(x_{i}\right)\right]$ of our point \rightarrow Cross-validation.

Algorithm 1 (CrossTraining).

1 Create s subsets of size N_{2} by randomly drawing $N_{2} / 2$ examples of each class.
2 Train s independent $S V M s f_{1}, \ldots, f_{s}$ using each of the subsets as the training set.
3 For each training example $\left(x_{i}, y_{i}\right)$ estimate the margin average m_{i} and variance v_{i} :

$$
m_{i}=\frac{1}{s} \sum_{r=1}^{s} y_{i} f_{r}\left(x_{i}\right) \quad v_{i}=\frac{1}{s} \sum_{r=1}^{s}\left(m_{i}-y_{i} f_{r}\left(x_{i}\right)\right)^{2}
$$

4 Discard all training examples for which $m_{i}+v_{i}<0$.
5 Discard all training examples for which $m_{i}-v_{i}>1$.
6 Train a final SVM on the remaining training examples.

Does it work?

	Train	Test	SVM	SVM	XTrain	XTrain	XTrain
Dataset	Size	Size	Perf.[\%]	\#SV	Subsets	Perf.[\%]	\#SV
Banana	400	4900	$\mathbf{8 9 . 0}$	111	5×200	88.2	$\mathbf{5 1}$
Waveform	400	4600	$\mathbf{9 0 . 2}$	172	5×200	88.7	$\mathbf{8 7}$
Splice	1000	2175	90.0	601	5×300	89.9	$\mathbf{5 2 2}$
Adult	3185	16280	84.2	1207	5×700	84.2	$\mathbf{6 0 6}$
Adult	32560	16280	85.1	11325	5×6000	84.8	$\mathbf{1 1 9 4}$
Forest	50000	58100	$\mathbf{9 0 . 3}$	12476	5×10000	89.2	$\mathbf{7 9 6 7}$
Forest	90000	58100	$\mathbf{9 1 . 6}$	18983	5×18000	90.7	$\mathbf{1 3 0 2 3}$
Forest	200000	58100	-	-	8×30000	$\mathbf{9 2 . 1}$	$\mathbf{1 9 5 2 6}$

But.... we lost control!

Dramatic Effect on the resulting class distribution $\Rightarrow \mathrm{Can}$ lead to uncontrolled balance on the finite sample set.

Current Quests and Spinoff

Guessing:
Use $m_{i}=\frac{1}{s} \sum_{r=1}^{s} y_{i} f_{r}\left(x_{i}\right)$ to initialize Lagrangians of original problem and initialize cache.

We are looking for a training scheme such that:

- Controlled choice of subset should lead to better generalization error if size of subsets increase.

AND

- Does not destroy properties of original problem.

Overview

- Problem Statement
- Tricks in the primal
- Tricks in the dual
- Conjectures

Conjectures - Lynching the speaker is prohibited

1. Machine Learning is not equal Optimization \Rightarrow

Vicinity of Minima is sufficient.
2. If you demand less, you can do more \Rightarrow

Early stopping as additional regularizer might help handling large data sets.
3. No respect for the dual \Rightarrow

If you have to do approximations, do it in the primal!

If someone puts a gun on my head and asks me to do model selection by minimizing a cost function (bounds) or by cross validation:
I choose crossvalidation.

- Chih-Jen Lin + O. Chapelle -

TEŞEKKÜRLER

References

Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and Applications, 33:82-95.

Schölkopf, B., Herbrich, R., Smola, A. J., and Williamson, R. C. (2000). A Generalized Representer Theorem. Technical Report 2000-81, NeuroCOLT. Published in Proceedings COLT'2001, Springer Lecture Notes in Artificial Intelligence, 2001.

Steinwart, I. (2004). Sparseness of Support Vector Machines-Some Asymptotically Sharp Bounds. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA.

