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Why are we sitting here?

SVM can not watch TV.

– Leon Bottou –
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Problem Statement

Why?

In kernel methods the representer theorem is yourbestfriend and yourworst enemy.

Theorem 1 (Representer Theorem). Under some mild conditions (f∈ RKHS,...) the so-
lution f ∗ of the problem

f ∗ = arg min
f

N∑

i=1

`(yi, xi, f(xi)) + Ω[f ] (1)

has the form:

f ∗(x) =

N∑

i=1

αik(xi, x). (2)

See (Kimeldorf and Wahba, 1971; Schölkopf et al., 2000)

Remark 2. Does not imply uniqueness ofα.
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Linear SVM in the primal

We want to minimize (with anL2 penalization of the errors)

w
2 + C

n∑

i=1

max(0, 1 − yi(w · xi + b))2.

−→ Forget about dual problem, Lagrange multipliers, Kuhn-Tucker conditions, ...
−→ Justminimize it directly; for instance Newton steps:

w
t+1 = w

t − (H t)−1∇t

Gradient: ∇t
p = 2wp −2C

∑n
i=1 yixip max(0, 1 − yi(w

t · xi + bt))

Hessian: H t
pq = 2 +2C

∑n
i=1 xipxiq1yi(wt·xi+bt)≤1

Very simple to implement and efficient: complexity isO(nd2) per step and usually convergence
is reached after only couple of steps.
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Experimental comparison with LSVM [Mangasarian ’00] – fixpoint based approach

• LSVM has been specially designed to train linear SVMs

Adult dataset, stop when precision on the obj fun< 10−7.
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FixedC = 0.05 (as in original paper). 6414 points.
Complexity is linear for both methods. Convergence problemswith LSVM

Better constant for Newton. for large values ofC
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No need of duality theory !

Simpler is better: with a linear SVM, when the number of points is larger than the dimension,
straightforward minimization is the best !
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Non-linear SVMs

• From the representer theorem, we know that optimal solution is ofthe form

f(x) =

n∑

i=1

βik(x,xi) + b

• Minimize directly overβ ∈ R
n, b ∈ R,

β>Kβ
︸ ︷︷ ︸

regularizer

+C
n∑

i=1

max(0, 1 − yi([Kβ]i + b))2

︸ ︷︷ ︸

loss

−→ Again, no need of duality theory.
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Complexity

• Let nSV be the number of support vectors, i.e. the points for which the gradient of the loss
is non zero.

• Using the Woodbury formula to invert the Hessian, the complexityof performing one New-
ton step on theβ is O(nSV(n + nSV

2))

−→ Not surprisingly, exactly the same as standard SVM solvers.

• Can be large ifnSV is large.
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Trick

• Fix the complexity (both in the learning and computational sense) bychoosing a subset of
points on which to expand the solution.

• Let S ⊂ [1...n]. Minimize

β>
S KSSβS + C

n∑

i=1

max(0, 1 − yi(Ki,SβS + b))2.

• If |S| = k, the complexity isO(k2n).

• Very similar to RSVM [Mangasarian ’00].
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• In feature space, this is equivalent to train a linear SVM after projection of points on the
subspace spanned by{Φ(xi)}i∈S.

• If the “effective dimension” of the feature space (or the effectiverank of the Gram matrix)
is aroundk −→ not a big loss in approximation.

• If it’s larger, loss in accuracy, but computational speed-up.

• Good for data mining:n is very large and one does not want to find the best solution, but
one within a fixed amount of time.
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Experimental results on the Adult dataset, RBF kernel.
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The first 100 eigenvalues of the kernel matrix retain89% of the spectrum.
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Comparison with standard SVM learning: Can re-
duce the training time of several orders of magni-
tude, without too much loss in accuracy.
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Remarks

• Objective function and test error are strongly related
−→ we are in anunderfittingsituation

• The Adult dataset is quite noisy−→ no need for an accurate solution (andS can be small).

• For some other datasets (e.g. Mnist), need for accuracy.
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Greedy choice of the subset

• Idea = find the subset of sizek such that the objective function computed with this subset
is small as possible.

• First attempt: given the current subset, the corresponding solution and a candidate to be
added in the subset, perform a virtual Newton step and see how muchthe objective function
would decrease.

• Select the best candidate among of a pool ofp of them and iterate. Complexity isO(nkp)

per iteration.
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Experiments on Mnist dataset, polynomial kernel of degree 5, 10000 points, class 0 vs the rest.

At each iteration, the objective function
is minimized and a new point is selected
to be in the subset according to

Greedy the method explained above
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Unsupervised the maximum distance in feature space from the linear subspace spanned by
the the current subset.

Margin the minimum distance from the decision boundary.

G. Bakır & O. Chapelle, Machine Learning, Support Vector Machines, and Large Scale Optimization , March 17, 2005 16 of 33



• Speed-up: discarding the points which are not support vectors, (i.e. yi(f(xi) + b) ≥ 1), the
algorithm is the same as kernel ridge regression.
−→ A fast rank one update is possible to recompute the solution after a basis point has
been added.

• Final algorithm:

for i = 1 to k do
if i is a power of 2then

Train the SVM on the current subset
end if
Choose a random set ofp candidates
Select the one which decreases the most the objective function
Update the solution (assuming the set of SV does not change)

end for

• Overall complexity isO(k2np))
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Multiclass experiment

• Mnist, full training set (60k points), one vs the rest.

• Use the same subset expansion for the 10 classifiers.

• Points in the subset are chosen such that the sum of the objective function is minimized.
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Take home message:

This enables the user tochoose the accuracy / time complexity trade-offhimself.
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Where do we spend our money in the dual formulation?

Consider a problem with noise.

⇒ All outliers and points in overlapping class regions will end upas support vector.

What are the problems ifn increases?
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Steinwart (Steinwart, 2004) showed that k – the number of SVs increaseslinearly with the
numbern of training examples. More specifically,

k/n −→ 2BK (3)

whereBK is the bayes risk.
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The noise is dominating the cache!
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Select patterns

Idea: Carefully select subset of data!
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Condensation and Editing

A trick from nearest neighbors training:

+1: condensed
−1: condensed
+1
−1

+1: edited
−1: edited
+1
−1

Condensation Editing
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Cross-Training

Reconsider Condense and MultiEdit:

Condense can be understood as: IfES[yifS(xi)] > 1, then remove it. SVM does this already.

MultiEdit can be understood as: IfES[yifS(xi)] < 0, then remove it. This is what we want.

We need to estimate the margin locationES[yifS(xi)] of our point→ Cross-validation.

Algorithm 1 (C ROSSTRAINING ).

1 Creates subsets of sizeN2 by randomly drawingN2/2 examples of each class.

2 Train s independent SVMsf1, . . . , fs using each of the subsets as the training set.

3 For each training example(xi, yi) estimate the margin averagemi and variancevi:

mi = 1
s

∑s
r=1 yifr(xi) vi = 1

s

∑s
r=1 (mi − yifr(xi))

2

4 Discard all training examples for whichmi + vi < 0.

5 Discard all training examples for whichmi − vi > 1.

6 Train a final SVM on the remaining training examples.
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Does it work?

Train Test SVM SVM XTrain XTrain XTrain
Dataset Size SizePerf.[%] #SV Subsets Perf.[%] #SV
Banana 400 4900 89.0 111 5x 200 88.2 51
Waveform 400 4600 90.2 172 5x 200 88.7 87
Splice 1000 2175 90.0 601 5x 300 89.9 522
Adult 3185 16280 84.2 1207 5x 700 84.2 606
Adult 32560 16280 85.1 11325 5x 6000 84.8 1194
Forest 50000 58100 90.3 12476 5x 10000 89.2 7967
Forest 90000 58100 91.6 18983 5x 18000 90.7 13023
Forest 200000 58100 — — 8x 30000 92.1 19526
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But.... we lost control!

Dramatic Effect on the resulting class distribution⇒ Can lead to uncontrolled balance on the
finite sample set.
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Current Quests and Spinoff

Guessing:

Usemi = 1
s

∑s
r=1 yifr(xi) to initialize Lagrangians of original problem and initialize cache.

We are looking for a training scheme such that:

- Controlled choice of subset should lead to better generalization error if size of subsets
increase.

AND

- Does not destroy properties of original problem.
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Conjectures – Lynching the speaker is prohibited

1. Machine Learning is not equal Optimization⇒

Vicinity of Minima is sufficient.

2. If you demand less, you can do more⇒

Early stopping as additional regularizer might help handling large data sets.

3. No respect for the dual⇒

If you have to do approximations, do it in the primal!
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If someone puts a gun on my head and asks me to do model
selection by minimizing a cost function (bounds) or by cross

validation:
I choose crossvalidation.

– Chih-Jen Lin + O. Chapelle –

G. Bakır & O. Chapelle, Machine Learning, Support Vector Machines, and Large Scale Optimization , March 17, 2005 32 of 33



SON
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