Tricks of the trade for training SVMs

Gökhan H. Bakır & Olivier Chapelle

Max Planck Institute for Biological Cybernetics

Tübingen, Germany

{goekhan.bakir,olivier.chapelle}@tuebingen.mpg.de

Overview

- Problem Statement
- Tricks in the primal
- Tricks in the dual
- Conjecture

Why are we sitting here?

SVM can not watch TV.

- Leon Bottou -

Problem Statement

Why?

In kernel methods the representer theorem is your **best** friend and your **worst** enemy.

Theorem 1 (**Representer Theorem**). Under some mild conditions ($f \in RKHS$,...) the solution f^* of the problem

$$f^* = \arg\min_{f} \sum_{i=1}^{N} \ell(y_i, x_i, f(x_i)) + \Omega[f]$$
(1)

has the form:

$$f^{*}(x) = \sum_{i=1}^{N} \alpha_{i} k(x_{i}, x).$$
(2)

See (Kimeldorf and Wahba, 1971; Schölkopf et al., 2000)

Remark 2. Does not imply uniqueness of α .

G. Bakır & O. Chapelle, Machine Learning, Support Vector Machines, and Large Scale Optimization , March 17, 2005

4 of 33

Overview

- Problem Statement
- Tricks in the primal
- Tricks in the dual
- Conjecture

Linear SVM in the primal

We want to minimize (with an L_2 penalization of the errors)

$$\mathbf{w}^2 + C\sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))^2.$$

 \longrightarrow Forget about dual problem, Lagrange multipliers, Kuhn-Tucker conditions, ...

 \longrightarrow Just minimize it directly; for instance Newton steps:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - (H^t)^{-1} \nabla^t$$

Gradient:
$$\nabla_p^t = 2w_p -2C\sum_{i=1}^n y_i x_{ip} \max(0, 1 - y_i(\mathbf{w}^t \cdot \mathbf{x}_i + b^t))$$

Hessian: $H_{pq}^t = 2 +2C\sum_{i=1}^n x_{ip} x_{iq} \mathbf{1}_{y_i(\mathbf{w}^t \cdot \mathbf{x}_i + b^t) \leq 1}$

Very simple to implement and efficient: complexity is $O(nd^2)$ per step and usually convergence is reached after only couple of steps.

Experimental comparison with LSVM [Mangasarian '00] - fixpoint based approach

• LSVM has been specially designed to train linear SVMs

Adult dataset, stop when precision on the obj fun $< 10^{-7}$.

G. Bakır & O. Chapelle, Machine Learning, Support Vector Machines, and Large Scale Optimization , March 17, 2005

No need of duality theory !

Simpler is better : with a linear SVM, when the number of points is larger than the dimension, straightforward minimization is the best !

Non-linear SVMs

• From the representer theorem, we know that optimal solution is of the form

$$f(\mathbf{x}) = \sum_{i=1}^{n} \beta_i k(\mathbf{x}, \mathbf{x}_i) + b$$

• Minimize directly over $\boldsymbol{\beta} \in \mathbb{R}^n, b \in \mathbb{R}$,

$$\underbrace{\boldsymbol{\beta}^{\top} \boldsymbol{K} \boldsymbol{\beta}}_{\text{regularizer}} + C \underbrace{\sum_{i=1}^{n} \max(0, 1 - y_i([\boldsymbol{K} \boldsymbol{\beta}]_i + b))^2}_{\text{loss}}$$

 \longrightarrow Again, no need of duality theory.

Complexity

- Let n_{sv} be the number of support vectors, i.e. the points for which the gradient of the loss is non zero.
- Using the Woodbury formula to invert the Hessian, the complexity of performing one Newton step on the β is $O(n_{sv}(n + n_{sv}^2))$
 - \longrightarrow Not surprisingly, exactly the same as standard SVM solvers.
- Can be large if n_{sv} is large.

Trick

- Fix the complexity (both in the learning and computational sense) by choosing a subset of points on which to expand the solution.
- Let $S \subset [1...n]$. Minimize

$$\boldsymbol{\beta}_{S}^{\top} K_{SS} \boldsymbol{\beta}_{S} + C \sum_{i=1}^{n} \max(0, 1 - y_{i}(K_{i,S} \boldsymbol{\beta}_{S} + b))^{2}.$$

- If |S| = k, the complexity is $O(k^2n)$.
- Very similar to RSVM [Mangasarian '00].

- In feature space, this is equivalent to train a linear SVM after projection of points on the subspace spanned by {Φ(x_i)}_{i∈S}.
- If the "effective dimension" of the feature space (or the effective rank of the Gram matrix) is around *k* → not a big loss in approximation.
- If it's larger, loss in accuracy, but computational speed-up.
- Good for data mining: n is very large and one does not want to find the best solution, but one within a fixed amount of time.

Experimental results on the Adult dataset, RBF kernel.

The first 100 eigenvalues of the kernel matrix retain 89% of the spectrum.

Remarks

- Objective function and test error are strongly related
 - \longrightarrow we are in an *underfitting* situation
- The Adult dataset is quite noisy \longrightarrow no need for an accurate solution (and S can be small).
- For some other datasets (e.g. Mnist), need for accuracy.

Greedy choice of the subset

- Idea = find the subset of size k such that the objective function computed with this subset is small as possible.
- First attempt: given the current subset, the corresponding solution and a candidate to be added in the subset, perform a virtual Newton step and see how much the objective function would decrease.
- Select the best candidate among of a pool of p of them and iterate. Complexity is O(nkp) per iteration.

10

Objective function

10³

 10^{2}

50

At each iteration, the objective function is minimized and a new point is selected to be in the subset according to

Greedy the method explained above

Random

Margin the minimum distance from the decision boundary.

200

Greedy Random

150

100

k = size of the subset

Unsupervised Margin • Speed-up: discarding the points which are not support vectors, (i.e. $y_i(f(\mathbf{x}_i) + b) \ge 1$), the algorithm is the same as kernel ridge regression.

 \longrightarrow A fast rank one update is possible to recompute the solution after a basis point has been added.

• Final algorithm:

```
for i = 1 to k do
```

```
if i is a power of 2 then
```

Train the SVM on the current subset

end if

Choose a random set of p candidates

Select the one which decreases the most the objective function

Update the solution (assuming the set of SV does not change)

end for

• Overall complexity is $O(k^2np))$

Multiclass experiment

- Mnist, full training set (60k points), one vs the rest.
- Use the same subset expansion for the 10 classifiers.
- Points in the subset are chosen such that the sum of the objective function is minimized.

Take home message:

This enables the user to choose the accuracy / time complexity trade-off himself.

Overview

- Problem Statement
- Tricks in the primal
- Tricks in the dual
- Conjectures

Where do we spend our money in the dual formulation?

Consider a problem with noise.

 \Rightarrow All outliers and points in overlapping class regions will end up as support vector.

What are the problems if n increases?

G. Bakır & O. Chapelle, Machine Learning, Support Vector Machines, and Large Scale Optimization , March 17, 2005

Steinwart (Steinwart, 2004) showed that k – the number of SVs increases **linearly** with the number n of training examples. More specifically,

$$k/n \longrightarrow 2\mathcal{B}_K$$
 (3)

where \mathcal{B}_K is the bayes risk.

G. Bakır & O. Chapelle, Machine Learning, Support Vector Machines, and Large Scale Optimization , March 17, 2005

21 of 33

The noise is dominating the cache!

G. Bakır & O. Chapelle, Machine Learning, Support Vector Machines, and Large Scale Optimization , March 17, 2005

Cache Misses are linear related to the Bayes Risk.

Select patterns

Idea: Carefully select subset of data!

G. Bakır & O. Chapelle, Machine Learning, Support Vector Machines, and Large Scale Optimization , March 17, 2005

Condensation and Editing

A trick from nearest neighbors training:

Cross-Training

Reconsider Condense and MultiEdit:

Condense can be understood as: If $\mathbb{E}_S[y_i f_S(x_i)] > 1$, then remove it. SVM does this already. MultiEdit can be understood as: If $\mathbb{E}_S[y_i f_S(x_i)] < 0$, then remove it. This is what we want.

We need to estimate the margin location $\mathbb{E}_S[y_i f_S(x_i)]$ of our point \rightarrow Cross-validation.

Algorithm 1 (CROSSTRAINING).

Create s subsets of size N₂ by randomly drawing N₂/2 examples of each class.
 Train s independent SVMs f₁,..., f_s using each of the subsets as the training set.
 For each training example (x_i, y_i) estimate the margin average m_i and variance v_i:

$$m_i = \frac{1}{s} \sum_{r=1}^{s} y_i f_r(x_i)$$
 $v_i = \frac{1}{s} \sum_{r=1}^{s} (m_i - y_i f_r(x_i))^2$

4 Discard all training examples for which m_i + v_i < 0.
5 Discard all training examples for which m_i - v_i > 1.
6 Train a final SVM on the remaining training examples.

Does it work?

	Train	Test	SVM	SVM	XTrain	XTrain	XTrain
Dataset	Size	Size	Perf.[%]	#SV	Subsets	Perf.[%]	#SV
Banana	400	4900	89.0	111	5x 200	88.2	51
Waveform	400	4600	90.2	172	5x 200	88.7	87
Splice	1000	2175	90.0	601	5x 300	89.9	522
Adult	3185	16280	84.2	1207	5x 700	84.2	606
Adult	32560	16280	85.1	11325	5x 6000	84.8	1194
Forest	50000	58100	90.3	12476	5x 10000	89.2	7967
Forest	90000	58100	91.6	18983	5x 18000	90.7	13023
Forest	200000	58100			8x 30000	92.1	19526

But.... we lost control!

Dramatic Effect on the resulting class distribution \Rightarrow Can lead to uncontrolled balance on the finite sample set.

G. Bakır & O. Chapelle, Machine Learning, Support Vector Machines, and Large Scale Optimization , March 17, 2005

Current Quests and Spinoff

Guessing:

Use $m_i = \frac{1}{s} \sum_{r=1}^{s} y_i f_r(x_i)$ to initialize Lagrangians of original problem and initialize cache.

We are looking for a training scheme such that:

- Controlled choice of subset should lead to better generalization error if size of subsets increase.

AND

- Does not destroy properties of original problem.

Overview

- Problem Statement
- Tricks in the primal
- Tricks in the dual
- Conjectures

Conjectures – Lynching the speaker is prohibited

1. Machine Learning is not equal Optimization \Rightarrow

Vicinity of Minima is sufficient.

2. If you demand less, you can do more \Rightarrow

Early stopping as additional regularizer might help handling large data sets.

3. No respect for the dual \Rightarrow

If you have to do approximations, do it in the primal!

If someone puts a gun on my head and asks me to do model selection by minimizing a cost function (bounds) or by cross validation: I choose crossvalidation.

- Chih-Jen Lin + O. Chapelle -

SON

TEŞEKKÜRLER

G. Bakır & O. Chapelle, Machine Learning, Support Vector Machines, and Large Scale Optimization , March 17, 2005

33 of 33

References

- Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. *Journal of Mathematical Analysis and Applications*, 33:82–95.
- Schölkopf, B., Herbrich, R., Smola, A. J., and Williamson, R. C. (2000). A Generalized Representer Theorem. Technical Report 2000-81, NeuroCOLT. Published in *Proceedings COLT'2001*, Springer Lecture Notes in Artificial Intelligence, 2001.
- Steinwart, I. (2004). Sparseness of Support Vector Machines—Some Asymptotically Sharp Bounds. In Thrun, S., Saul, L., and Schölkopf, B., editors, *Advances in Neural Information Processing Systems 16*. MIT Press, Cambridge, MA.