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Hierarchical Multilabel Classification:
union of partial paths model

Goal: Learn to classify documents with
respect to a classification hierarchy
when a document can belong to more
than one class at a time.
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How to learn hierarchical multilabels?

Two simple strategies, both based on putting a classifier onto each internal node of
the tree

• Flatten the hierarchy: Decompose the multilabel into a set of binary
classification problems which are learned independently. This approach does
not utilize dependencies between the microlabels.

• Hierarchical training: Train a node j with examples (x,y) that belong to the
parent, i.e. ypa(j) = 1. This approach utilizes some of the dependencies.
However, it is not explicitly trained in terms of a loss function for the hierarchy.

We wish to improve on these approaches...
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How to measure loss?

Consider a true multilabel y = (y1, . . . , yk) ∈ {+1,−1}k, and a predicted one
ŷ = (ŷ1, . . . , ŷk). Many choices:

• Zero-one loss: �0/1(y, ŷ) = �y �= ŷ�; treats all incorrect multilabels alike

• Symmetric difference loss: �Δ(y, ŷ) =
∑

j�yj �= ŷj�; counts incorrect
microlabels.

• Hierarchical loss (Cesa-Bianchi et al. 2004):
�H(y, ŷ) =

∑
j cj�yj �= ŷj & yk = ŷk∀k ∈ ancestors(j)�; the first mistake

along a path is penalized

• Simplified hierarchical loss:
�H̃(y, ŷ) =

∑
j cj�yj �= ŷj & yparent(j) = ŷparent(j)�; mistake in the child is

penalized if the parent was correct.
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Scaling the loss

It may also make sense to penalize mistakes made deep in the tree less than
mistakes near the root. Two possible ways:

• Divide parent’s scaling coefficent cpa(j) equally among the children
(Cesa-Bianchi et al. 2004):

croot = 1, cj = cpa(j)/|children(pa(j))|, j �= root

• Scaling by the size of the subtree rooted by j:

croot = 1, cj = |T (j)|/|T (root)|, j �= root

Coupled with the latter the hierarchical loss �H amounts to the proportion of the
tree not reachable from the root when we stop before the first mistake along each
path.
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The classification model

We follow the approach of Hofmann et al. (2003) and Taskar et al. (2003).

Make the hierarchy a graphical model (Markov Tree) T = (V, E) with the
exponential family.

P (y|x,w) = Z(x,w)−1
∏

e∈E

exp
(
wT

e φφφe(x,ye)
)

= exp
(
wTφφφ(x,y)

)

• ye = (yi, yj) is an edge-labeling, i.e. a restriction of the whole multilabel y into
the edge e = (i, j)

• φφφe(x,ye) is a joint feature map for the pair (x,ye)

• w = (we)e∈E is the weight vector to be learned

• Z(x,w) =
∑

y∈{+1,−1}k exp
(
wTφφφ(x,y)

)
is a normalization factor (aka partition

function).
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Feature vectors

The joint feature vector φφφ(x,y) is composed of blocks

φφφue
e (x,ye) = �ye = ue�φφφ(x), e ∈ E,ue ∈ {+1,−1}2

where φφφ(x) is some feature representation of x (e.g. bag of words, substring
spectrum,...)

• This representation allows us to learn different feature weights for different
contexts.

• In evaluating the kernel we can benefit from the special structure repeating
φφφ(x); the kernel does not need to be explicitly represented, which saves
memory.

For an example (x,y), where ye1 = (+1,−1) we get the following:
e1 e2 en

Φ(x)Φ (x,y )e1
e1

Φ (x,y )e1
e1

Φ (x,y )e2
e2

Φ (x,y )en
en.  .  .

0 00

Φ(x,y)

(−1,−1) (−1,+1) (+1,−1) (+1,+1)
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From Maximum Likelihood to Maximum Margin

P (y|x,w) = Z(x,w)−1
∏

e∈E

exp
(
wT

e φφφe(x,ye)
)

= exp
(
wTφφφ(x,y)

)

To find the maximum likelihood assignment w∗ = argmaxwP (y|xi,w) we would
need to compute the partition function Z(x,w), but this is hard.

Examining the ratios of probabilities cancels out the partition function

P (yi|xi,w)
P (y|xi,w)

= exp
(
wTφφφ(xi,yi) −wTφφφ(xi,yi)

)

Maximizing the ratio over all incorrect pseudo-examples (xi,y) �= (xi,yi) is
equivalent of maximizing the minimum margin

argmaxw min
xi,y �=yi

wT Δφφφ(xi,y) = argmaxw min
xi,y �=yi

wTφφφ(xi,yi) −wTφφφ(xi,y)
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Scaling the margin

In general, we would like to push high-loss pseudo-examples far from the correct
pseudo-example while allowing nearly-correct pseudo-examples get closer.

Also it is useful to allow slack for the examples.

If we insist the margin to be proportional to the loss, we produce a grading of the
feature space:

C E CLJ

Fi AM

E

N

S P

Fo

margin

w f(x,{N,E,M,S,A})

f(x,{E,M,J,S})

f(x,{N,E,M,S})

f(x,{N,E,M,S,Fo})
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Primal optimization problem

The margin maximization problem can be written as

min
w,ξξξ≥0

1
2
||w||2 + C

m∑

i=1

ξi

s.t. wT Δφφφ(xi,y) ≥ ���(yi,y) − ξi, ∀i,y ∈ {+1,−1}k

• Δφφφ(xi,y) = φφφ(xi,yi) −φφφ(xi,y) is the different of the feature vectors,

• ξi is the slack alloted to example xi, same slack is used for each
pseudo-example (xi,y).

• exponential number of constraints in the number of microlabels!
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Dual problem

max
ααα>0

∑

i,y

α(xi,y)�(yi,y) − 1
2

∑

xi,y

∑

x′
i,y

′
α(xi,y)T K(xi,y; x′

i,y
′)α(x′

i,y
′)

s.t.
∑

y

α(xi,y) ≤ C, ∀i

• a dual variable α(xi,y) for each pseudo-example (xi,y) corresponding to the
primal constraints.

• the kernel contains an entry for each pair of pseudo-examples:
K(xi,y; x′

i,y
′) = Δφφφ(xi,y)T Δφφφ(x′

i,y
′).

• one box constraint per training example
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Solving the optimization problem

Problem: Exponential number (in the length of y) of variables in the dual
(contraints in primal)

For example, datasets we’ll experiment with: Reuters - 2500 × 234, WIPO-alpha -
1372 × 2188)

Ways to avoid solving the full problem:

• Working set approaches (Hofmann et al.): solve the problem for a subset of
exanples, incrementally add misclassified pseudo-examples . Polynomial
number of pseudo-examples sufiices for an approximate solution.

• Marginalization of the dual variables (Taskar et al.): transform the problem
into a polynomial-sized one by utilizing the Markov structure

Our approach is a variant of the latter.
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Marginalizing the problem

We want to express the optimisation problem in terms of marginal dual variables:

μe(xi,ye) =
∑

{u|ue=ye}
α(xi,u).

Need to express the kernel, loss, and constraints in terms of the edges:

K(xi,y; x′
i,y

′) =
∑

e∈E

Δφφφe(xi,ye)T Δφφφe(x′
i,y

′
e) =

∑

e∈E

Ke(xi,ye; x′
i,y

′
e),

The losses �Δ and �H̃ (but not �0/1 or �H) can be expressed as a sum of edge-wise
losses

�(y,y′) =
∑

e

�e(ye,y′
e).

The box constraints get the form
∑

ue

μe(xi,ue) ≤ C, ∀i, e ∈ E.
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Ensuring marginal consistency

We need to ensure that the marginal dual variables μe(xi,ye) correspond to a valid
α(xi,y). That is, the marginals should lie on the marginal polytope of the
hierarchy T .

If two edges share a node j, it is necessary and sufficient to have equal
node-marginals μj :

∑

y′
μe(xi, y, y′) = μj(xi, y) =

∑

y′
μe′(xi, y, y′).

We can achieve local consistency by pairing up each edge with its parent.
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Marginalized problem

max
μμμ>0

∑

e∈E

∑

xi,ye

μe(xi,ye)T���e(xi,ye) − 1
2

∑

e∈E

∑

xi,ye

∑

x′
i,y

′
e

μe(xi,ye)T Ke(xi,ye; x′
i,y

′
e)μe(x′

i,y
′
e)

s.t
∑

y,y′
μe(i, y, y′) ≤ C, ∀i, e ∈ E,

∑

y′
μe(i, y′, y) =

∑

y′
μe′(i, y, y′), ∀i, ∀y, (e, e′) : e = pa(e′),

This problem is considerably smaller than the original: e.g. on Reuters data we
have ca. 330000 marginal dual variables, in WIPO-alpha sligthly over one million.

But this is still too large to solve with off-the-shelf QP methods.
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Decomposing the problem

The optimization problem has some structure:

• The constraints leave different x:s independent, but tie edges together

• The objective decomposes by the edges, but ties examples together

A gradient-based approach lets us decompose the problem by the examples.

Let us use the shorthands μμμi = (μe(xi,ue))e,ue
, ���i = (�e(xi,ye))e,ye

,
Kij = (Ke(xi,ye; xj ,y′

e))e,ye,y′
e
.

When starting solving the subproblem for xi, we need to obtain initial gradient
gi = ���i −

∑
j Kijμμμj . This involves all active marginal dual variables and a

corresponding slice of the kernel matrix

When updating μμμi only, gradient update is much cheaper as it only involves the
kernel block Kii: Δgi = −KiiΔμμμi

PASCAL workshop, Schloss Thurnau March 18, 2005 Juho Rousu 16
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The optimization algorithm

The main idea of the algorithm is the following:

1. Obtain a working set of examples

2. Make one optimization pass over examples xi in working set:

(a) Obtain an initial gradient for xi.

(b) Update μμμi by making a few conditional gradient steps

3. Compute KKT conditions, slacks, and the duality gap

4. If duality gap small enough, stop, otherwise repeat from step 1.

PASCAL workshop, Schloss Thurnau March 18, 2005 Juho Rousu 17
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Conditional Gradient Ascent

To update μμμi we use a variant of conditional gradient ascent.

We iterate the following:

1. Find the best feasible point μμμ′
i with respect to the gradient gi. This requires

solving a linear program μμμ′
i = argmaxz∈FgT

i z. If μμμ′ = μμμ we have the optimum
and can stop.

2. Find a saddle point μμμ∗ of the quadratic objective along the ray
μμμi + a(μμμ′

i −μμμ), a > 0.

3. Update μμμi = μμμ∗ if saddle point feasible, otherwise update μμμi = μμμ′
i.

In step 1, we use MATLABs linear interior point solver. We typically make only a
few iterations before moving onto the next example.
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Conditional Gradient Ascent

Gradient
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Conditional Gradient Ascent

Gradient

Conditional 
gradient
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Conditional Gradient Ascent

Saddle point

Gradient

Conditional 
gradient
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Conditional Gradient Ascent
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Conditional Gradient Ascent
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Conditional Gradient Ascent
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Conditional Gradient Ascent
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Working set maintenance

• Observation: with problems of this kind, most of the training examples will
end up being active at optimum; no use trying to keep working set small:

• We take every training example that is active or violates margins.

• But we try to work on more examples that contribute to duality gap a lot: give
them more conditional gradient iterations.

PASCAL workshop, Schloss Thurnau March 18, 2005 Juho Rousu 26



�

�

�

�

Experiments

Datasets:

• Reuters Corpus Volume 1 (’CCAT’ family), 34 microlabels, maximum tree
depth 3, bag-of-words with TFIDF wieghting, 2500 documents were used for
training and 5000 for testing.

• WIPO-alpha patent dataset (D section), 188 microlabels, maximum tree depth
4, 1372 documents for training, 358 for testing.

Algorithms:

• Our algorithm: H-M3 (’Hierarchical Maximum Margin Markov Networks’)

• Comparison: Flat SVM, hierarchically trained SVM, hierarchical regularized
least squares algorithm (Cesa-Bianchi et al. 2004)

• Implementation in MATLAB 7, LIPSOL solver used in the gradient ascent

• Tests run on a high-end Pentium PC with 1GB RAM

PASCAL workshop, Schloss Thurnau March 18, 2005 Juho Rousu 27



�

�

�

�

Example learning curve

• WIPO-alpha,training with �H̃ -loss

• Optimizing 106+ marginal dual
variables, majority are non-zero at
the optimum

• Error rates at bottom out faster
than objective, early stopping is
tempting

• No significant overfitting observed
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Results

Table 1: Prediction losses obtained using different learning algorithms on Reuter’s
(left) and WIPO-alpha data (right). The loss �0/1 is given as a percentage, the other
losses as averages per-example.

Algorithm �0/1 �Δ �H

svm 32.9 0.611 0.099

h-svm 29.8 0.570 0.097

h-rls 28.1 0.554 0.095

h-m3-�Δ 27.1 0.575 0.114

h-m3-�H̃ 27.9 0.588 0.109

Algorithm �0/1 �Δ �H

svm 87.2 1.84 0.0532

h-svm 76.2 1.74 0.0511

h-rls 72.1 1.69 0.0495

h-m3-�Δ 70.9 1.67 0.0504

h-m3-�H̃ 65.0 1.73 0.0478
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Conclusions

• We presented an kernel-based approach for hierarchical text classification when
documents can belong to more than one category at a time

• Utilizing the dependency structure of microlabels in a Markovian way leads to
improved prediction accuracy, especially on WIPO-alpha, where the hierarchy
is deeper than Reuter’s.

• Optimization is made feasible by utilizing decomposition of the original
problem and making incremental conditional gradient search in the
subproblems.
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