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The Web today

� the largest source of information

size:

22.800.000.000 (WorldWideWebSize.com, 28 Aug 2007)
11.500.000.000 (A. Gulli, 2005)

content:

over 100TB of text
+ multimedia

Web population:

300.000.000 (Nielsen/NetRatings 2007)
700.000.000 unique users (comScore World Metrix, 2006.03)
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Some available statistics

500.000.000 queries per day globally (after Google, 2005)

For a major global search engine it is:

• 250,000,000 queries daily,

• almost 3000 queries/sec over, 80TB textual corpus (say)

• each query must be served under 1 second...

�... the competitors are one click away...�
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Search Engine Architecture

Crawler(s)

(after: �Searching the Web�, A. Arasu, et al.)
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Search Engines � seemingly simple task

Return Web documents containing speci�ed keywords

Modules:

• Crawler
• follow links and collect documents

• Repository
• store the docs � enable updates, access, persistence

• Index
• record: which word in which document?

• Ranking System
• which docs �t best to the users' needs?
• which docs are inherently valuable?

• Presentation Module
• �nd a good form of result visualisation

• Service
• process queries, �nd docs, present results
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Crawler architecture
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Average Human capability: a few inspected results

How to select these few out of thousands for the beginning of the
result list? � search engines' primary issue

The Ranking System plays a central role in search quality

Ranking systems existed in �classic� IR, before, but needed
substantial adaptation to the needs of WWW.
(search engine �revolution� AD 1998)
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Ranking System

In�uences the search quality (= mission-critical), kept secret

1 Assign a score to each document.

2 Sort docs in non-increasing order.

Factors used for computing the ranking:

• text analysis (doc's content, URL, meta tags, etc.)

• anchor text analysis

• link analysis

• query log analysis

• tra�c analysis

• user history analysis (personalisation)
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Text-based Ranking � classic IR approach

A �bag of words� representation of text (document, query):

• A vector: keywords as dimensions, some statistics as
coordinates

• TF-IDF (term freq. � inverted doc. freq.) or its variants

• Text-based ranking: vector similarity between query and
document (dimensionality reduction (SVD, etc.),
context-building, etc.)

Some drawbacks, but this model worked quite well for controlled
textual document collections.
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WWW-speci�c issues concerning text analysis

Classic IR techniques are faced with Web-speci�c issues:

• low quality mixed with high quality

• extreme diversity (versus homogeneity in classic IR)

• self-description problem

• noise, errors, etc.

• adversarial aspects � easy to spam
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A Remedy � Link Analysis

Links represent a social aspect of Web publishing
(to some extent).

A link from document p to document q: a positive judgement

• the author of p concerns q as �valuable� ,
because it was choosen out of billions other documents to
link to (except link nepotism).

A simplistic assumption, but works in mass.

Web users implicitly �assess� the Web documents.

Example: PageRank � a famous link-based ranking algorithm
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Example: PageRank � Basic Idea of Authority Flow

1 each page has some authority

2 each page distributes its authority equally through links

3 the authority of a page is the authority �owing into this page



PageRank Equations

• simpli�ed PageRank:

R(p) =
X

i∈IN(p)

R(i)/outDeg(i), (1)

• introducing �dumping factor� d and �personalization vector� v(p):

R(p) = (1− d)
X

i∈IN(p)

R(i)

outDeg(i)
+ d · v(p) (2)

• simple �dangling-links� correction:

R(p) = (1−d)
X

i∈IN(p)

R(i)

outDeg(i)
+d ·v(p)+(1−d)v(p)

X
i∈ZEROS

R(i), (3)



PageRank Equations

• simpli�ed PageRank:

R(p) =
X

i∈IN(p)

R(i)/outDeg(i), (1)

• introducing �dumping factor� d and �personalization vector� v(p):

R(p) = (1− d)
X

i∈IN(p)

R(i)

outDeg(i)
+ d · v(p) (2)

• simple �dangling-links� correction:

R(p) = (1−d)
X

i∈IN(p)

R(i)

outDeg(i)
+d ·v(p)+(1−d)v(p)

X
i∈ZEROS

R(i), (3)



PageRank Equations

• simpli�ed PageRank:

R(p) =
X

i∈IN(p)

R(i)/outDeg(i), (1)

• introducing �dumping factor� d and �personalization vector� v(p):

R(p) = (1− d)
X

i∈IN(p)

R(i)

outDeg(i)
+ d · v(p) (2)

• simple �dangling-links� correction:

R(p) = (1−d)
X

i∈IN(p)

R(i)

outDeg(i)
+d ·v(p)+(1−d)v(p)

X
i∈ZEROS

R(i), (3)



Search Engines Web Spam

PageRank � summary

PageRank, introduced in Google (1998), now patented in USA.

Most search engines apply similar algorithms, nowadays.

Properties:

1 A pioneer successful link-based ranking algorithm (also: HITS)

2 Quite immune to spamming

3 Gave birth to numerous variants:
• personalized PageRank
• Topic-sensitive PageRank (i.e. �dynamic� version)
• Trust-Rank, and Anti-TrustRank, (SE spam combating)
• extensions of the underlying random surfer model (e.g. RBS)
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1 Search Engines

2 Web Spam
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A bit of Web Economics. . .

What makes Search Engines survive?

search-based advertising � 97% of Web search revenues

(A. Broder, �Foundations of Web Advertising�, tutorial, Edinburgh, 2006)

Main types:

• sponsored links (aside search results)

• contextual ads (placed on Web-sites)
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Internet Advertising (USA, 2006)

Search-based ads take the major share (40%) � $6.76B
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The Central Role of Search Engines in WWW

Web pages are accessed through search engines

1 Search engine ranking → Web page visibility

2 Web page visibility → tra�c on the page

3 tra�c on the page → incomes

Thus it is incentive today to rank highly in search engines!
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What is Spam?

De�nition

Web Spam (Search Engine Spam) is any manipulation of Web
documents in order to mislead Search Engines to obtain
undeservedly high ranking, without improving the �real�
document information quality (for humans)

or (the extreme version):

De�nition

Web Spam (Search Engine Spam) is anything that Web authors do
only because Search Engines exist.

Web Spam is motivated economically: $16.9B× 40% = $6.76B
(in 2006)



Search Engines Web Spam

Spam is destructive

Spam a�ects every-day life of Web community

• undermines mission and business of search engines

• seriously deteriorates information search quality in the Web

Combating Web spam is a primary issue not only for search engines.



Search Engines Web Spam

Spam is destructive

Spam a�ects every-day life of Web community

• undermines mission and business of search engines

• seriously deteriorates information search quality in the Web

Combating Web spam is a primary issue not only for search engines.



Search Engines Web Spam

Spam is destructive

Spam a�ects every-day life of Web community

• undermines mission and business of search engines

• seriously deteriorates information search quality in the Web

Combating Web spam is a primary issue not only for search engines.



Search Engines Web Spam

Spam is destructive

Spam a�ects every-day life of Web community

• undermines mission and business of search engines

• seriously deteriorates information search quality in the Web

Combating Web spam is a primary issue not only for search engines.



Search Engines Web Spam

Spam vs SEO

Not all actions taken in order to improve Web visibility of pages are
regarded as spam.

• �white hat� techniques for improving Web page visibility exist
(SEO)

• SE publish their guidelines in their �Terms of Service�

• There is a gray area in between, however. . .
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Spam taxonomy

Two groups of techniques:

• hiding techniques

• boosting techniques

With regard to factors used in ranking algorithms:

• content-based techniques

• link-based techniques

• other
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Spam techniques

• content-based
• hidden text (size, color)
• repetition
• keyword stu�ng/dilution
• language-model-based (phrase stealing, dumping)

• link-based
• �honey pot�
• anchor-text spam
• blog/wiki spam
• link exchange
• link farms
• expired domains

• other
• cloaking
• redirection
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Naïve Web Spam



Hidden text



Made for Advertising
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Search engine?
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Fake search engine
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�Normal� content in link farms
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Cloaking
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Redirection
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Redirects using Javascript

Simple redirect

<script>

document.location="http://www.topsearch10.com/";

</script>

�Hidden� redirect

<script>

var1=24; var2=var1;

if(var1==var2) {

document.location="http://www.topsearch10.com/";

}

</script>
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Problem: obfuscated code

Obfuscated redirect

<script>

var a1="win",a2="dow",a3="loca",a4="tion.",

a5="replace",a6="('http://www.top10search.com/')";

var i,str="";

for(i=1;i<=6;i++)

{

str += eval("a"+i);

}

eval(str);

</script>
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Problem: really obfuscated code

Encoded javascript

<script>

var s = "%5CBE0D%5C%05GDHJ_BDE%16...%04%0E";

var e = �, i;

eval(unescape('s%eDunescape%28s%29%3Bfor...%3B'));

</script>

More examples: [Chellapilla and Maykov, 2007]
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Fighting Spam

On the search engines' side:

• Education (what is regarded spam and what is not)

• Spam detection

• text-based (contents, URLs, meta-tags)
• link-based (Trust-Rank, Anti-TrustRank, etc.)
• language-model based (Language Model Disagreement

method, etc.)
• maintaining up-to-date �black lists�
• recently � ML-based

• Maintaining spam-reporting interfaces

• Punishment (excluding from index)

For researchers:
Very interesting applications of Data Mining/Information Retrieval.
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ML can help greatly

The struggle gets harder:

• There are a lot of factors used to compute search engine
ranking

• There is an �arms race� :

1 spammers apply new deceptive technique
2 search engine improves the ranking system
3 spammers apply new deceptive technique
4 search engine improves the ranking system. . .

Machine Learning approach recently applied to support Search
Engines in combating Web spam
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Tools for dealing with Web Spam

Tools for dealing with Web Spam
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Motivation

Fetterly [Fetterly et al., 2004] hypothesized that studying the
distribution of statistics about pages could be a good way of
detecting spam pages:

� in a number of these distributions, outlier values are
associated with web spam�
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Challenges: Machine Learning

Machine Learning Challenges:

• Instances are not really independent (graph)

• Learning with few examples

• Scalability
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Challenges: Information Retrieval

Information Retrieval Challenges:

• Feature extraction: which features?

• Feature aggregation: page/host/domain

• Feature propagation (graph)

• Recall/precision tradeo�s

• Scalability
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Data is really important

• It is dangerous for a search engine to provide labelled data for
this

• Even if they do, it would never re�ect a consensus
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Assembling Process

• Crawling of base data

• Elaboration of the guidelines and classi�cation interface

• Labeling

• Post-processing
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Crawling of base data

U.K. collection

77.9 M pages downloaded from the .UK domain in May 2006
(LAW, University of Milan)

• Large seed of about 150,000 .uk hosts

• 11,400 hosts

• 8 levels depth, with <=50,000 pages per host
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U.K. collection

77.9 M pages downloaded from the .UK domain in May 2006
(LAW, University of Milan)

• Large seed of about 150,000 .uk hosts

• 11,400 hosts

• 8 levels depth, with <=50,000 pages per host



Classi�cation interface
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Labeling process

• We asked 20+ volunteers to classify entire hosts

• Asked to classify normal / borderline / spam

• Do they agree? Mostly. . .
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Labeling process

• We asked 20+ volunteers to classify entire hosts

• Asked to classify normal / borderline / spam

• Do they agree? Mostly. . .
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Agreement
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Results

• Labels:

Label Frequency Percentage

normal 4,046 61.75%
borderline 709 10.82%
spam 1,447 22.08%
can not classify 350 5.34%

• Agreement:

Category Kappa Interpretation

normal 0.62 Substantial agreement
spam 0.63 Substantial agreement
borderline 0.11 Slight agreement

global 0.56 Moderate agreement
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Result: �rst public Web Spam collection

• Public spam collection

• Labels for 6,552 hosts
• 2,725 hosts classi�ed by at least 2 humans
• 3,106 automatically considered normal (.ac.uk, .sch.uk,
.gov.uk, .mod.uk, .nhs.uk or .police.uk)

• http://www.yr-bcn.es/webspam/

• Web Spam challenge

• Track I: Information retrieval + Machine learning
• Track II: Machine learning
• http://webspam.lip6.fr/

• AIRWeb 2007 Workshop

• GraphLab 2007 Workshop
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Link farms

Single-level farms can be detected by searching groups of nodes
sharing their out-links [Gibson et al., 2005]
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Single-level farms can be detected by searching groups of nodes
sharing their out-links [Gibson et al., 2005]
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Semi-streaming model

Handling large graphs:

• Memory size enough to hold some data per-node

• Disk size enough to hold some data per-edge

• A small number of sequential passes over the data
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Link-Based Features

• Degree-related measures

• PageRank

• TrustRank [Gyöngyi et al., 2004]

• Truncated PageRank [Becchetti et al., 2006]

• Estimation of supporters [Becchetti et al., 2006]
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TrustRank Idea
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Hop-plot and PageRank
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Neighbors: spam
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Neighbors: normal
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Bottleneck number

bd (x) = minj≤d{|Nj(x)|/|Nj−1(x)|}. Minimum rate of growth of
the neighbors of x up to a certain distance. We expect that spam
pages form clusters that are somehow isolated from the rest of the
Web graph and they have smaller bottleneck numbers than
non-spam pages.
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Probabilistic counting

1
0
0
0
1
0

1
0
0
0
1
0

1
1
0
0
0
0

0
0
0
1
1
0

0
0
0
0
1
1

1
0
0
0
1
0

1
0
0
0
1
1

11
11
00
11
11
11

1
0
0
0
1
1

Count bits set
to estimate
supporters

Target 
page

Propagation of
bits using the

“OR” operation

1
0
0
0
1
0

[Becchetti et al., 2006] shows an improvement of ANF algorithm [Palmer et al., 2002]

based on probabilistic counting [Flajolet and Martin, 1985]



Probabilistic counting

1
0
0
0
1
0

1
0
0
0
1
0

1
1
0
0
0
0

0
0
0
1
1
0

0
0
0
0
1
1

1
0
0
0
1
0

1
0
0
0
1
1

11
11
00
11
11
11

1
0
0
0
1
1

Count bits set
to estimate
supporters

Target 
page

Propagation of
bits using the

“OR” operation

1
0
0
0
1
0

[Becchetti et al., 2006] shows an improvement of ANF algorithm [Palmer et al., 2002]

based on probabilistic counting [Flajolet and Martin, 1985]



Collection Links Content Both SIGIR'07

3 A Reference Collection

4 Link-based features

5 Content-based features

6 Using Links and Contents

7 SIGIR'07: Exploiting Topology



Collection Links Content Both SIGIR'07

Content-Based Features

Most of the features reported in [Ntoulas et al., 2006]

• Number of word in the page and title

• Average word length

• Fraction of anchor text

• Fraction of visible text

• Compression rate

• Corpus precision and corpus recall

• Query precision and query recall

• Independent trigram likelihood

• Entropy of trigrams

More about this in the last part of the talk
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Content-based features (entropy related)

T = {(w1, p1), . . . , (wk , pk)} the set of trigrams in a page,

where trigram wi has frequency pi

Features:

• Entropy of trigrams H = −
∑

wi∈T pi log pi

• Also, compression rate, as measured by bzip
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Content-based features (related to popular keywords)

F set of most frequent terms in the collection

Q set of most frequent terms in a query log

P set of terms in a page

Features:

• Corpus �precision� |P ∩ F |/|P|
• Corpus �recall� |P ∩ F |/|F |
• Query �precision� |P ∩ Q|/|P|
• Query �recall� |P ∩ Q|/|Q|
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Average word length
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Figure: Histogram of the average word length in non-spam vs. spam
pages for k = 500.
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Corpus precision
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Figure: Histogram of the corpus precision in non-spam vs. spam pages.
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Query precision
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Figure: Histogram of the query precision in non-spam vs. spam pages for
k = 500.
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Cost-sensitive decision tree with bagging

Bagging of 10 decision trees, asymmetrical costs.

Cost ratio 1 10 20 30 50

True positive rate 65.8% 66.7% 71.1% 78.7% 84.1%
False positive rate 2.8% 3.4% 4.5% 5.7% 8.6%

F-Measure 0.712 0.703 0.704 0.723 0.692
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Link- and content-based features

Link-based and content-based

Both Link-only Content-only

True positive rate 78.7% 79.4% 64.9%
False positive rate 5.7% 9.0% 3.7%

F-Measure 0.723 0.659 0.683
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General hypothesis

Pages topologically close to each other are more likely to
have the same label (spam/nonspam) than random pairs of
pages.

Pages linked together are more likely to be on the same topic than
random pairs of pages [Davison, 2000]
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Topological dependencies: in-links

Histogram of fraction of spam hosts in the in-links

• 0 = no in-link comes from spam hosts

• 1 = all of the in-links come from spam hosts
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Topological dependencies: out-links

Histogram of fraction of spam hosts in the out-links

• 0 = none of the out-links points to spam hosts

• 1 = all of the out-links point to spam hosts
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Idea 1: Clustering

Classify, then cluster hosts, then assign the same label to all hosts
in the same cluster by majority voting
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Idea 1: Clustering (cont.)

Initial prediction:
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Idea 1: Clustering (cont.)

Clustering:
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Idea 1: Clustering (cont.)

Final prediction:
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Idea 1: Clustering � Results

Baseline Clustering

Without bagging

True positive rate 75.6% 74.5%
False positive rate 8.5% 6.8%

F-Measure 0.646 0.673

With bagging

True positive rate 78.7% 76.9%
False positive rate 5.7% 5.0%

F-Measure 0.723 0.728

V Reduces error rate
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Idea 2: Propagate the label

Classify, then interpret �spamicity� as a probability, then do a
random walk with restart from those nodes
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Idea 2: Propagate the label (cont.)

Initial prediction:
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Idea 2: Propagate the label (cont.)

Propagation:
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Idea 2: Propagate the label (cont.)

Final prediction, applying a threshold:
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Idea 2: Propagate the label � Results

Baseline Fwds. Backwds. Both

Classi�er without bagging

True positive rate 75.6% 70.9% 69.4% 71.4%
False positive rate 8.5% 6.1% 5.8% 5.8%

F-Measure 0.646 0.665 0.664 0.676

Classi�er with bagging

True positive rate 78.7% 76.5% 75.0% 75.2%
False positive rate 5.7% 5.4% 4.3% 4.7%

F-Measure 0.723 0.716 0.733 0.724
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Idea 3: Stacked graphical learning

• Meta-learning scheme [Cohen and Kou, 2006]

• Derive initial predictions

• Generate an additional attribute for each object by combining
predictions on neighbors in the graph

• Append additional attribute in the data and retrain
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Idea 3: Stacked graphical learning (cont.)

• Let p(x) ∈ [0..1] be the prediction of a classi�cation algorithm
for a host x using k features

• Let N(x) be the set of pages related to x (in some way)

• Compute

f (x) =

∑
g∈N(x) p(g)

|N(x)|
• Add f (x) as an extra feature for instance x and learn a new
model with k + 1 features
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Idea 3: Stacked graphical learning (cont.)

Initial prediction:
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Idea 3: Stacked graphical learning (cont.)

Computation of new feature:
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Idea 3: Stacked graphical learning (cont.)

New prediction with k + 1 features:
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Idea 3: Stacked graphical learning - Results

Avg. Avg. Avg.
Baseline of in of out of both

True positive rate 78.7% 84.4% 78.3% 85.2%
False positive rate 5.7% 6.7% 4.8% 6.1%

F-Measure 0.723 0.733 0.742 0.750

V Increases detection rate
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Idea 3: Stacked graphical learning x2

And repeat ...

Baseline First pass Second pass

True positive rate 78.7% 85.2% 88.4%
False positive rate 5.7% 6.1% 6.3%

F-Measure 0.723 0.750 0.763

V Signi�cant improvement over the baseline



Part III

New Experimental Results

Jakub Piskorski, Marcin Sydow, Dawid Weiss
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8 New results
Linguistic features
IDEA 1: simple addition of linguistic features
IDEA 2: pruning incomplete data
IDEA 3: selecting good �pure� hosts
Summary
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Why linguistic features?

• Using linguistic and language features such as language
diversity, complexity, expressivity, immediacy, uncertainty and
emotional consistency turned to have discriminatory potential
for deception detection [Zhou et al., 2004].

• In previous research linguistic features not exstensively
exploited for web spam detection.

• Explore prevalence of spam relative to linguistic features in
WEB-SPAM-2006UK corpus.
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How to measure?

• Complexity: average number of: sentences, clauses, noun

phrases.

• Diversity: lexical diversity, content word diversity.

• Expressivity: preference of speci�c part-of-speech categories to

others.

• Non-immediacy: self-reference, passive voice, generalizing
terms.
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Linguistic features

• Length = total number of tokens (word-like units)

• Lexical diversity = number of di�erent tokens
total number of tokens

• Lexical validity = number of tokens which constitute valid word forms
total number of potential word forms

• Text-like fraction = total number of potential word forms
total number of tokens

• Emotiveness = number of adjectives and adverbs
number of nouns and verbs

• Self-referencing = number of 1st-person pronouns
total number of pronouns

• Passive voice = number of verb phrases in passive voice
total number of verb phrases
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Computing linguistic features

• Only for the �summary� of the WEB-SPAM-2006UK corpus
(< 400 pages per host), 64GB.

• Utilized Corleone (Core Linguistic Entity Extraction),
developed at JRC, and LingPipe
(www.alias-i.com/lingpipe).

• 14.36% of pages had no �textual� content.

www.alias-i.com/lingpipe
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IDEA 1

Just add the linguistic features to the attribute set.
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Idea 1: Just linguistic features

linguistic features

with without

instances 8 411 8 411
attributes 287 280

classi�ed correctly 7 666 91.14% 7 687 91.39%

missclassi�ed 745 8.85% 724 8.60%

• The results are not much di�erent.
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Idea 1: Just linguistic features

With linguistic features:

Class TP FP Precision Recall F-Measure

normal 0.970 0.435 0.946 0.970 0.958
undecided 0.091 0.010 0.162 0.091 0.116
spam 0.525 0.033 0.615 0.525 0.566

Without linguistic features:

Class TP FP Precision Recall F-Measure

normal 0.970 0.415 0.949 0.970 0.959
undecided 0.108 0.010 0.186 0.108 0.137
spam 0.552 0.033 0.629 0.552 0.588

Figures in red are �better�.
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IDEA 2

Prune the input by removing records with missing values.
Rerun the experiments with and without linguistic attributes.
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Idea 2: prune records with missing values

linguistic features

with without

instances 6 644 6 644
attributes 287 280

classi�ed correctly 6 016 90.54% 6 009 90.44%

missclassi�ed 628 9.45% 635 9.55%

• Not much improvement (di�erence so small it is most likely
statistically insigni�cant).
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Idea 2: prune records with missing values

With linguistic features:

Class TP FP Precision Recall F-Measure

normal 0.958 0.343 0.954 0.958 0.956
undecided 0.112 0.019 0.119 0.112 0.115
spam 0.608 0.039 0.622 0.608 0.615

Without linguistic features:

Class TP FP Precision Recall F-Measure

normal 0.958 0.348 0.954 0.958 0.956
undecided 0.105 0.019 0.113 0.105 0.109
spam 0.601 0.039 0.616 0.601 0.608
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IDEA 3

Choose only �pure� hosts (for which class decision was univocal).
Rerun the experiments with and without linguistic attributes.
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Pure hosts � explanation

The notion of a �spam host� is quite vague, inter-judge
classi�cation agreement is not perfect.

Selecting representative spam/ not spam records by �ltering
univocally-classi�ed examples;

• 1 049 NNN hosts,

• 391 SS hosts,

• 57 BB hosts,

• (no SSS or BBB examples in the original data).

The above gives a total of 1 497 pure hosts used as input.
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Idea 3: �pure� hosts

linguistic features

with without

instances 1 497 1 497
attributes 287 280

classi�ed correctly 1 328 88.71% 1 330 88.84%

missclassi�ed 169 11.28% 167 11.15%
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Idea 3: �pure� hosts

With linguistic features:

Class TP FP Precision Recall F-Measure

normal 0.949 0.107 0.954 0.949 0.952
undecided 0.193 0.042 0.155 0.193 0.172
spam 0.821 0.055 0.840 0.821 0.831

Without linguistic features:

Class TP FP Precision Recall F-Measure

normal 0.950 0.103 0.956 0.950 0.953
undecided 0.175 0.041 0.145 0.175 0.159
spam 0.826 0.056 0.839 0.826 0.832
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Idea 3: �pure� hosts, incomplete records removed

linguistic features

with without

instances 1 211 1 211
attributes 287 280

classi�ed correctly 1 099 90.75% 1 095 90.42%

missclassi�ed 112 9.24% 116 9.57%

• Further reduction of noisy examples results in quality
improvement.

• The improvement gained from linguistic features is small, but
clear.
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Idea 3: �pure� hosts, incomplete records removed

With linguistic features:

Class TP FP Precision Recall F-Measure

normal 0.970 0.089 0.961 0.970 0.966
undecided 0.306 0.031 0.294 0.306 0.300
spam 0.834 0.048 0.861 0.834 0.848

Without linguistic features:

Class TP FP Precision Recall F-Measure

normal 0.969 0.098 0.958 0.969 0.963
undecided 0.245 0.032 0.245 0.245 0.245
spam 0.834 0.048 0.861 0.834 0.848
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Distribution of linguistic features in the Web-Spam2006UK corpus.

• Explore the distribution of each linguistic feature.

• Explore fraction of spam within each range.
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Distribution of linguistic features in the Web-Spam2006UK corpus.

• Explore the distribution of each linguistic feature.

• Explore fraction of spam within each range.
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Conclusions

Preliminary experimental results seem to indicate:

• linguistic features introduced in [Zhou et al., 2004] slightly
improve classi�cation accuracy,

• pruning inconsistently labeled examples improves classi�cation
accuracy.

Further research:

• including other types of linguistic features (e.g. sentiment
analysis, etc.),

• more systematic evaluation methods.
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