Systematic Risk Analysis for Safety Assessments of Road Systems

J. Stefan Bald Katja Stumpf Tim Wallrabenstein Le Thu Huyen

Technische Universität Darmstadt Germany

Accidents have no cause – they just happen ?!?

Each accidents is a result of a concatenation of unfortune events

Is the road system a black box for safety analysis?

Or a well structured system, which can be described systematically?

Main Objectives:

- deal with uncertainty;
- include all available information;
- get access to the cause-and-effect chains of the road system;
- have the possibility to improve and upgrade single parts (modules) of the model;
- to allow and encourage the cooperation of different research groups, even from different disciplines.

Assessment by Using Risk Values

Numerically described multidimensional

probability distributions (NDMPD)

- Data is numerically described with probability distributions
- Numerical description
- Multidimensionality
- -The user describes the relations between variables as he is used to do

Describing the System systematically

The aim of DRAM is to modularily describe the cause-and-effect chain of a system with active and passive elements

The modelling process may build on (reasonable) assumptions

Describing the System systematically

Cooperation and Management of Knowledge

To enable, encourage and promote cooperation

- we propose to establish a Database of Knowledge (DoKn) as a sort of repository of modules
- we propose a set of "rules" how researchers and practicianers may anounce their needs and their findings and how they can find partners
- NDMPD are an ideal way to store and exchange risk (safety) related information

Proposed Approach

- First model, in which existing knowledge will be integrated
- Identify problematic parts (sensitivity analysis)
- Refine and enhance model with specific research, possibly also with reasonable assumptions
- Use the model for general and detailled investigations

Our vision is cooperation

- We are convinced that a breakthrough in safety research is only possible, if many specialists work together
- We developed a method, which allows, needs and promotes cooperation
- We ecourage to build up such a community
- It is up to you to use the method (with us; with others)

Actual Work

- Motivate knowledge holders to cooperate
- Start qualitative analysis
- Collect data and building the Database of Knowledge (DoKn)
- Refine quantitative analysis
- Start to enhance the tools

Thank You!

J. Stefan Bald, Katja Stumpf, Tim Wallrabenstein, Le Thu Huyen

Road and Pavement Engineering, Technische Universität Darmstadt

Petersenstraße 30, 64287 Darmstadt, Germany

fon +49 6151 16-2686

fax +49 6151 16-3386

strassenwesen@verkehr.tu-darmstadt.de

www.tu-darmstadt.de/verkehr

Summary of Advantages

- Modelling the cause-and-effect chains gives new insights into the system, especially if you are looking for
 - the reasons for failures
 - · the probable extent of damage
 - the effect of possible measures
- An overall covering structured model allows
 - · to work in many working groups, even from different disciplines
 - · integrating not only the (statistically "rare") accident events, but many more (also behavioural) data
 - upgrading and refining the model in certain areas without redesigning the whole structure

Modularity

–allows to selectively refine (parts of) the model according to the needs and the available knowledge

Very simple example for calculating with NDMPD

Driver behaviour is reproducable

In-Safet

Numerical description allows appropriate accuracy

comparison of the computation accuracy

comparison of the computation accuracy (enlargement)

