

Innovative Fright Delivery in Urban Space

First Results of Hanover Field Tests

Werner Schönewolf Fraunhofer IPK, Berlin

email: schoenewolf@ipk.fhg.de

Motivation and Background for the concept

- 80% of deliveries in urban areas
- 10% of vehicles, but 20% of traffic and 50% of environmental effects
- Policy of local authorities based on restrictions, or access control
- Extra costs and less efficiency
- Propose innovative solutions to distribution logistics

Objectives

 Support an innovative approach to the organisation of urban freight transport, in line with political strategies to safeguard the « liveability » of cities, while being compatible with efficient logistics.

Fraunhofer

Institut
Produktionsanlagen und
Konstruktionstechnik

Involved Parties &

Boundary Conditions

Public Authorities:

- -Traffic
- -Pollution
- -Safety
- -City live

Customer

- -Delivery Cost
- -Service quality

FIDEUS Solution

Logistics Operator:

- -Efficiency
- -Low costs
- -durability

Vehicle OEMs:

- -Standard solutions
- -Cost

Efficient urban logistics through:

- Low-emission, low-noise vehicles
- Better ergonomics and safety
- organised in compliance with City's transport requirements
- introducing new vehicle type for last mile

Issues adressed in Hannover:

- practical experimentation with new logistics for last mile delivery in sensitive urban areas
- Search for new ways to combine, urban comfort for pedestrians with business needs of small shops and stores
- Reduce negative impact on traffic flow from delivery vans
- Reduce emissions in terms of noise and air polutants

Three Testcases in Hannover

Transport Research Arena Europe 2008

Ljubijana, Slovenia

21 - 24 April 2008

2nd LANE

TR

URBAN LIFE

CITY HUB

2

Reduction of 2nd lane parking and its effects on traffic by implementing dedicated parking zones for delivery vans.

3

An approach to minimize illegal delivery activity within low-traffic zone and emission saving through electronic micro carriers.

4

A low-noise van in combination with an electronic micro carrier concept for delivery within large pedestrian zones.

Transport Research Arena Europe 2008

CityHub: Problem addressed

- situation during delivery hour
- safety
- damage to pavement
- ,livability

CityHub: Problem addressed

- Access restriction do not meet delivery requirements
- pedestrian zones experience drawbacks caused by lack of logistics services

Summary Scenario ,City-Hub'

- Time-extension for distribution (reduces number of vehicles) by placing a feeder-vehicle close to the pedestrian area, which feeds walker, biker, microcarrier.
- Legal aspects: extension of access times for pedestrian zone, permission microcarrier, reservation of feeder-space and enforcement

Ljubljana, Slovenia 21 - 24 April 2008

Delivery for Level -1 via stairs,

sometimes several vans approaching -1 Dense structure of small businesses and shops at Level -1

Reserved parking space for loading/unloading of MCUV-containers:

Hannover

Depot D 1

Kröpke Level -1

Delivery at -1

Results concerning delivery times

Duration of entries compared to permitted entry-times

- •Elimination of illegal access by applying MicroCarrier
- •Time extension of delivery with MCUV by factor 2,43 see next slide!

Results concerning delivery times (2)

- Actual delivery operation reduced by approx. 20%
- •Only delivery process considered no hub-operation included (sorting to containers)

Scenario 2b: Level zero delivery (ground level):

- the Iveco is a CNG-van, noise reduced with a range of safety features for operation close to pedestrians

Scenario 2b:

Level zero delivery (ground level):

the Iveco also is used to deliver bulk packages/ goods that would not fit into the CityContainer of the Microcarrier

Noise comparison between Fideus Van (Iveco) and standard van in pedestrian zone:

Average -7db/A Peak -10db/A

Noise comparison of Iveco and standard van

Summary Scenario: ,Urban Life'

Characteristics

- Pedestrian zone
- mix of shopping, small business, recreation, public living space
- Tram only, bike-lane available, delivery trucks have to park on pedestrian area (very annoying to the public, illegal and risky)

Solution:

mid-size truck is parked at reserved place, uC travels on bike-lane along entire Limmerstr

MCUV passing along Limmerstr. Between Tram and pedestrian foot walk Operational area of Microcarrier:

Limmer only
 Limmer plus
 surroundings

Loading zone Limmerstr.

4 different logistic cases for analysis

truck-distances for 4 different logistic cases

- Savings in distance (km) only if MCUV serves entire surrounding
- Increase of capacity of feeder (3) and MCUV employment delivers best savings

Potential of savings per day and vehicle Limmerstr. only

- •value 1 (orange) represents data of 1 DHL truck, operated in 3 different cases
- •All other values are extensions to all DHL, all KEP, incl Food, incl other small business deliveries

Summary, 2nd Lane Stop'

Characteristics:

- main road (Arterial)
- 2 lanes each direction,
- traffic impact from parked vehicles (congestion, safety, legal aspect)

Summary Scenario

2nd Lane Stop

Solution:

- parking place reserved to delivery trucks (time window only), with yellow marks on ground and signposts for enforcement
- Additional ways for operator
- Problems with enforcement

Characteristics:

- Daily profile almost flat
- 1400 Vehicles/hour
- Recording of traffic profile surpassing2nd Lane Parking with ,Floating Car'

Results 2nd lane

88,7 of traffic in platoons

33% time loss with 2nd lane occupation

1242 vehicles affected per hour

Tagesschnitt				
1398	FzG/h			
45,33	Pulks/h			
80,03	s (Intervall)			
27,53	FzG/Pulk			
1242,54	FzG_Pulk/h			
20,71	Fzg_Pulk/min			
88,74	%			
30,83	s (frei)			
	s (2nd)			

2nd lane occupation time (hannual delivery days	5 200	10,8926586 <i>/</i> 2178,53172 <i>/</i>	Verbrauch pro Tag bei Haltezeit X Stunden (Beispiel 10h) Verbrauch bei X Tagen (Beispiel 200)
		2,32 <i>kg/l</i>	Benzin: CO_2 nach Messung Bayerisches Landesamt
	L	2,62 <i>kg/l</i>	Diesel: CO_2 nach Messung Bayerisches Landesamt
		5,38097335 t CO2	bei 50/50 Diesel/Benzin und 200 Tagen mit je 10h Haltezeit
			Schätzung Hannover Streckennetz: Faktor 5 realisitisch!
		44841,4446 km	Kilometer Normalfahrzeug bei 120g/km EU Grenzwert

2200 liters of additional fuel per year

5,4 tons of CO2 (50/50 gasoline/diesel, 200days)

45.000 km equivalent travel distance based on 120g/km EU-emission-limit

Conclusion

- Measurement of emission savings provide a ,solid tendency for 2nd lane environmental impact;
- Extrapolation on entire urban area is possible with location specific structural data
- For more reliable emission data long term observation with more sophisticated sensor equipment required
- The MCUV concept appears promising concerning traffic reduction and service improvement but requires improvement of logistics concepts to meet commercial criteria
- These findings will be brought to the regional environmental action plan by the Region and the City of Hannover