
Learning Structured Outputs via Kernel
Dependency Estimation and Stochastic

Grammars

Fabrizio Costa, Andrea Passerini , Paolo Frasconi

Machine Learning and Neural Networks Group
Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze, Italy

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

The Idea in a Nutshell

Structured output prediction

Output structures generated by stochastic grammar

Output structure mapped into frequency of single
production rules

Predict mapped output by vectorial regression (KDE)

Compute mapped output pre-image by Viterbi procedure

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Kernel Dependency Estimation

Pre-requisites

Input mapping φ : X 7→ FX
Input Kernel κ(x , x ′) = 〈φ(x), φ(x ′)〉
Output mapping ψ : Y 7→ FY
Output Kernel λ(y , y ′) = 〈ψ(y), ψ(y ′)〉

Two-Stage Process

Estimate output features g : X 7→ FY
Compute pre-image ψ−1 : FY 7→ Y

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Output Feature Estimation Problem

Estimate g : X 7→ FY given examples {(xi , ψ(yi))}.
Assume finite dimensionality no for FY
Apply kernel ridge regression solving:

C = Ψ(y)(K + γmIm)−1 (1)

with K input kernel matrix, Ψ(y) no ×m matrix with
columns ψ(y), and solution given by:

g(x) =
m∑

i=1

ciκ(x , xi) (2)

Efficient alternatives exist (e.g. maximum margin
regressionrobot)

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Pre-image calculation

Estimate output mapping inversion ψ−1 : FY 7→ Y
Search space of structures for one with image nearest to
g(x):

f (x) = arg min
y∈Y

‖g(x)− ψ(y)‖2 (3)

Using kernel ridge regression for g(x):

‖g(x)− ψ(y)‖2 = λ(y , y)− 2
m∑

i,j=1

hijλ(yi , y)κ(xj , x) (4)

being H = {hij} = (K + µI)−1.

Corinna et al. solved it by a graph theoretical algorithm in
the case of output strings and k -gram output kernels.

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Using Stochastic Grammars

Consider a stochastic grammar G(x) = {N,T ,S,Π(x)}
Π(x) are example dependent production rule probabilities
(unknown on unseen examples)

The output feature mapping ψ(y) is a real vector encoding
Π(x)

A probabilistic parser is used in the pre-image step to
output the most probable parse given the estimated Π(x).

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Using Stochastic Context Free Grammars

Production rules rk` have the form Ak 7→ α` with Ak ∈ N
and α` ∈ (N ∪ T ∪ {ε})∗.
Production rule rk` has an attached probability πk ,` with
constraints

∑
` πk ,` = 1 for each k = 1 . . . , |N|.

These probabilities are linked to the feature vector ψ(y) by
the softmax function:

πk ,` =
eψk,`∑
j=1 eψk,j

. (5)

The feature estimation problem consists of solving a
generalized linear model.

A SCFG parser computes the most probable parse given
the estimated Π(x) by the inside-outside algorithm.

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Experiments

Experimental Setting

Prove that the algorithm can be applied where a standard
SCFG parser fails.

Simulate PP-attachment ambiguity resolution:

eat the salad with the fork ⇒ (VP (V eat) (NP a salad) (PP
with a fork))
eat the salad with tomatoes ⇒ (VP (V eat) (NP a salad (PP
with tomatoes)))

Lexicalization (example dependent) is needed to resolve
ambiguity.

Introduces a form of context-sensitiveness

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Toy SCFG grammar

Ambiguity resolution simulated by the following grammar:

S → ScS|NV

V → wNP|vNP

N → n|ncV

NP → nP|ncVP

P → pn

w → 5

v → 4

n → 2|3
p → 1

c → 0

Probabilities are uniform except for S → (.2)ScS|(.8)NV

Context-sensitiveness introduced by collapsing ’v’ and ’w’
in ’x’.

A standard SCFG parser with probabilities estimated over
the entire dataset cannot disambiguate.

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Data Preparation

Douglas Rohde’s Simple Language Generator (SLG) to
randomly generate dataset.

Post-processed in two ways:

Natural filtered out duplicate input sequences
Unique filtered out sentences with identical representation
in FY

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Results (1)

Compared KDE-SCFG with standard SCFG

Used spectrum kernel with k-mers of size 2 to 5 to
compute κ

use Collin’s evalb program to compute the bracketing
F-measure and exact parse matching score.

Randomly split dataset in two sets (1,000 instances each)

Model selection on the first set (5-folds cv)

Performance evaluation on the second set (5-folds cv)

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Results (2)

FILTERING NATURAL UNIQUE

MEASURE F-SCORE EXACT F-SCORE EXACT

SCFG<35 86.4 10.3 84.7 3.1
SCFG 85.8 8.1 84.4 0.5
KDE-SCFG<35 93.3 33.2 94.3 28.6
KDE-SCFG 91.5 26.1 89.6 4.8

Results on the entire datasets and focused on short
sequences (< 35 terminals) only.

KDE-SCFG significantly outperforms the SCFG parser
(p < .05 in all pairwise comparisons).

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

Conclusions

Novel solution to pre-image problem

Use frequency of stochastic grammar production rules as
output feature mapping

Significantly outperformed standard SCFG parser on
simplified NLP problem

Further extensions are possible: e.g. use probabilistic ILP
programs in place of SCFG.

July 10-14, 2006 - UCL, London Learning Structured Outputs via KDE and SG

