

Textual Entailment Recognition Based on Dependency Analysis and WordNet

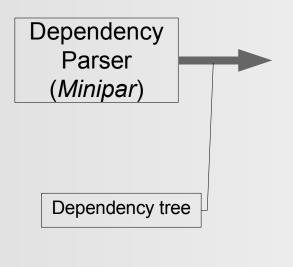
Jesús Herrera Anselmo Peñas Felisa Verdejo

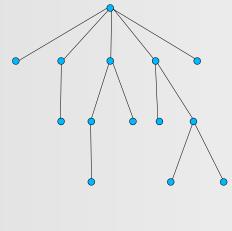
Southampton, 12th April 2005

Index

- Objectives and Approach
- Architecture
- Lexical Entailment
- Matching Between Dependency Trees
- **Experiments Design**
- Results
- **Analysis and Conclusions**

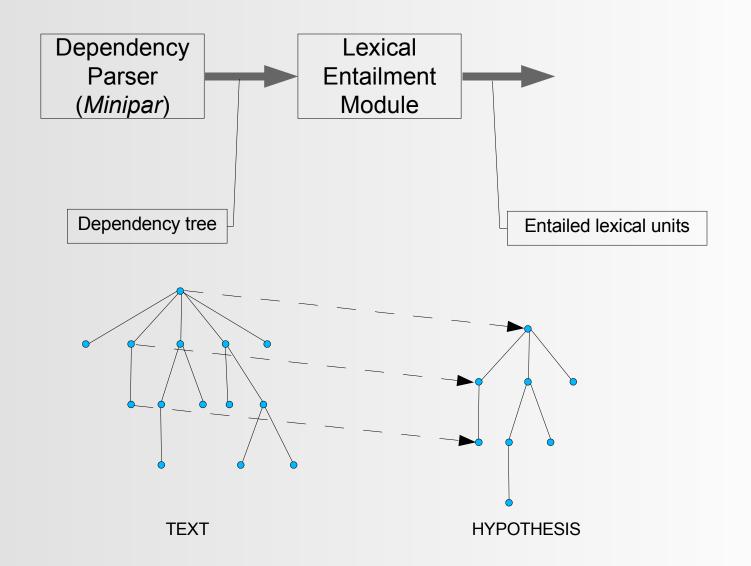
Objectives and Approach


- Objectives
 - Focusing on lexical analysis
 - Semantic relations at the lexical level (*WordNet*)
 - Analysis directed by dependency tree (*Minipar*)
 - How can lexical analysis help to resolve RTE?

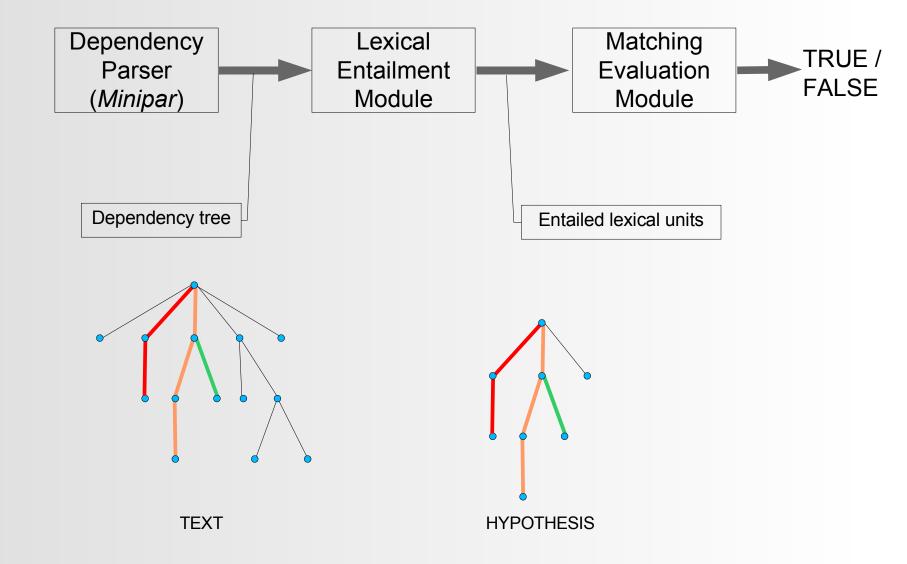

- Approach
 - Matching between dependency trees

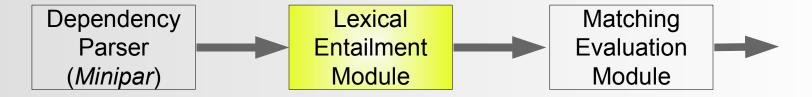
Architecture

Architecture


TEXT

Architecture


Architecture



Architecture

Architecture

When does exist an eltailment between lexical units?

Based on WordNet relations:

- Synonymy and "WordNet Similarity"
- Hyponymy and "WordNet Entailment"
- **Multiwords**
- Negation and Antonymy

Synonymy and "WordNet Similarity"

entails(T, H) **IF** synonymy(T, H) **OR** WN_similarity(T, H)

Examples:

synonymy(allow, grant) ≡ TRUE

→ entails(allow, grant)

WN_similarity(discover, reveal) ≡ TRUE → entails(discover, reveal)

Hyponymy and "WordNet Entailment"

Relations between *WordNet synsets* having a transitive property.

entails(T, H)

IF exists a path from a synset of T to a synset of H conformed by hyponymy and/or WN entailment relations

Examples:

hyponymy(glucose, sugar) ≡ TRUE —— entails(glucose, sugar)

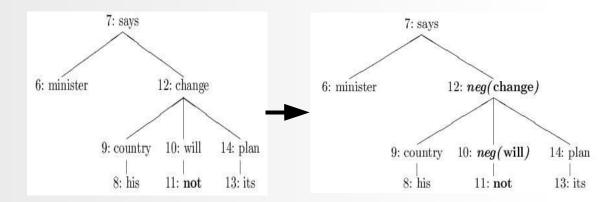
WN_entailment(death, kill) ≡ TRUE —— entails(death, kill)

Multiwords

Why recognize multiwords?

Word / Multiword 1	Relation between words / multiwords	Word / Multiword 2
Hamas	synonymy	Islamic_Resistance_Movement
melanoma	hyponymy	skin_cancer

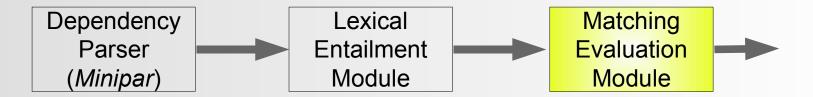
Recognition of WordNet multiwords:


- Lemmatization of components
- Fuzzy matching between candidates and WN multiwords

Candidate Multiword	Processing Action	WordNet Multiword
Japanise_capital	Levenshtein's Distance < 10%	Japanese_capital

Negation and Antonymy

Negation relations from a leave are propagated to the head

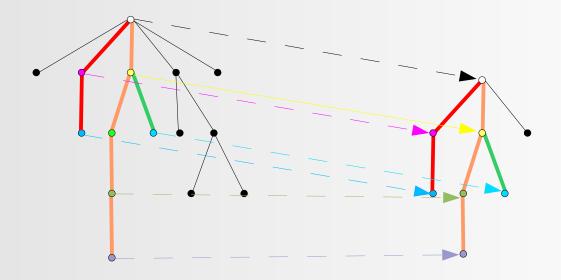

Entailment is implemented considering *WordNet*'s antonymy relation

Example:

```
<u>Text's node:</u> neg(change) — ➤ antonymy(change, stay) = TRUE
entails(neg(change), continue)
```


Matching Between Dependency Trees

Matching branches


Similarity Text - Hypothesis

Matching Between Dependency Trees

Matching branches

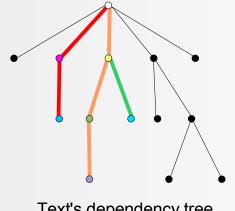
Branches from H tree whose all nodes are involved in a lexical entailment

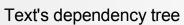
Text's dependency tree

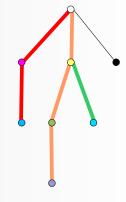
Hypothesis' dependency tree

Matching Between Dependency Trees

Similarity T - H


Ratio of nodes from H pertaining to matching branches


Example:


H nodes = 8

H matching nodes = 7

Similarity(T, H) = 7/8

Hypothesis' dependency tree

When does a Text entail a Hypothesis?

Best accuracy was obtained when Similarity(T, H) ≥ 50%

Experiments Design

Comparing the proposed system to...

Training corpus

Baseline System I

Search for coincident words between T and H

Baseline System II

Search for coincident lemmas between T and H

Test corpus

Baseline System III

Proposed System without *WordNet* based lexical entailment

Results

Training corpus

	Baseline System I	Baseline System II	Proposed System
CD	76.29%	71.13%	80.41%
IE	47.14%	50.00%	47.14%
IR	51.43%	52.86%	51.43%
MT	53.70%	53.70%	55.56%
PP	52.44%	52.44%	54.88%
QA	51.11%	54.44%	46.67%
RC	48.54%	50.49%	53.40%
Overall Accuracy	54.95%	55.48%	56.36%

Test corpus

	Baseline System III	Proposed System
CD	79.33%	78.67%
IE	52.50%	55.00%
IR	51.77%	51.77%
MT	55.83%	54.17%
PP	48.94%	42.55%
QA	48.46%	45.38%
RC	47.86%	47.14%
Overall Accuracy	55.75%	54.75%

Lexical analysis, as proposed, is not enough

- Lexical analysis, as proposed, is not enough
- Better results for tasks involving high lexical and syntactic coincidence

- Lexical analysis, as proposed, is not enough
- Better results for tasks involving high lexical and syntactic coincidence
- High lexical matching

Semantic entailment

- Lexical analysis, as proposed, is not enough
- Better results for tasks involving high lexical and syntactic coincidence
- High lexical matching

Semantic entailment

In-depth treatment of syntactic relations needed

- Lexical analysis, as proposed, is not enough
- Better results for tasks involving high lexical and syntactic coincidence
- High lexical matching

Semantic entailment

- In-depth treatment of syntactic relations needed
- RTE Tackling a wide set of linguistic phenomena

Textual Entailment Recognition Based on Dependency Analysis and WordNet

THANK YOU