Learn to Weight Term in Information Retrieval Using Category Information

Rong Jin¹ Joyce Y. Chai¹ Luo Si²

¹Department of Computer Science and Engineering Michigan State University

> ²School of Computer Science Carnegie Mellon University

International Conference on Machine Learning, 2005

Outline

- Overview of Term Weighting Methods in Information Retrieval
 - Term Weighting based on TF.IDF
 - Term Weighting based on Language Models
 - Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach
- **B** Experiment
 - Experimental Design
 - Baseline Approaches
 - Experimental Results

4 Summary

4 B 🕨 4

Outline

- Overview of Term Weighting Methods in Information Retrieval
 - Term Weighting based on TF.IDF
 - Term Weighting based on Language Models
 - Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach

Experiment

- Experimental Design
- Baseline Approaches
- Experimental Results

Summary

- (E) - (

Outline

- Overview of Term Weighting Methods in Information Retrieval
 - Term Weighting based on TF.IDF
 - Term Weighting based on Language Models
 - Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach

3 Experiment

- Experimental Design
- Baseline Approaches
- Experimental Results

Summary

Outline

- Overview of Term Weighting Methods in Information Retrieval
 - Term Weighting based on TF.IDF
 - Term Weighting based on Language Models
 - Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach
- 3 Experiment
 - Experimental Design
 - Baseline Approaches
 - Experimental Results

4 Summary

TF.IDF Language Models Problems

Outline

Overview of Term Weighting Methods in Information Retrieval

• Term Weighting based on TF.IDF

- Term Weighting based on Language Models
- Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach
- 3 Experiment
 - Experimental Design
 - Baseline Approaches
 - Experimental Results

4 Summary

Image: Image:

TF.IDF Language Models Problems

Term Weighting Methods based on TF.IDF

• Most popular methods in information retrieval.

• Consist of three factors

- Term frequency (TF): $f(w, \mathbf{d})$
 - How frequent does the term w appear in document \mathbf{d}
- Inverse document frequency (IDF):
 - How rare is term w in a collection \mathcal{C}

$$idf(w) = \log\left(\frac{N+0.5}{N(w)}\right)$$

N : the total number of documents in collection $\mathcal C$

<ロト <問ト < 回ト < 回ト

- N(w) : the number of documents in \mathcal{C} having word w
- \bullet Document normalization factor, e.g. $\|\mathbf{d}\|_2$
 - Reduce the bias of long documents

TF.IDF Language Models Problems

Term Weighting Methods based on TF.IDF

- Most popular methods in information retrieval.
- Consist of three factors
 - Term frequency (TF): $f(w, \mathbf{d})$
 - How frequent does the term w appear in document \mathbf{d}
 - Inverse document frequency (IDF):
 - How rare is term w in a collection $\mathcal C$

$$idf(w) = \log\left(\frac{N+0.5}{N(w)}\right)$$

N : the total number of documents in collection \mathcal{C}

- N(w) : the number of documents in \mathcal{C} having word w
- \bullet Document normalization factor, e.g. $\|\mathbf{d}\|_2$
 - Reduce the bias of long documents

TF.IDF Language Models Problems

Term Weighting Methods based on TF.IDF

- Most popular methods in information retrieval.
- Consist of three factors
 - Term frequency (TF): $f(w, \mathbf{d})$
 - How frequent does the term w appear in document \mathbf{d}
 - Inverse document frequency (IDF):
 - How rare is term w in a collection \mathcal{C}

$$idf(w) = \log\left(\frac{N+0.5}{N(w)}\right)$$

 $N \quad : \quad \text{the total number of documents in collection } \mathcal{C}$

- N(w) : the number of documents in \mathcal{C} having word w
- \bullet Document normalization factor, e.g. $\|d\|_2$
 - Reduce the bias of long documents

TF.IDF Language Models Problems

Term Weighting Methods based on TF.IDF

- Most popular methods in information retrieval.
- Consist of three factors
 - Term frequency (TF): $f(w, \mathbf{d})$
 - How frequent does the term w appear in document \mathbf{d}
 - Inverse document frequency (IDF):
 - How rare is term w in a collection \mathcal{C}

$$idf(w) = \log\left(\frac{N+0.5}{N(w)}\right)$$

N : the total number of documents in collection $\mathcal C$

・ロト ・ 同ト ・ ヨト ・ ヨト

- N(w) : the number of documents in \mathcal{C} having word w
- Document normalization factor, e.g. $\|\mathbf{d}\|_2$
 - Reduce the bias of long documents

TF.IDF Language Models Problems

Okapi: An Example of TF.IDF Term Weighting

Similarity between query ${\bf q}$ and document ${\bf d}$ is:

$$sim(\mathbf{d}, \mathbf{q}) = \sum_{w \in \mathbf{q}} \frac{kf(w, \mathbf{q})f(w, \mathbf{d})}{f(w, \mathbf{d}) + k(1 - b + b\frac{|\mathbf{d}|}{\mathbf{d}})} \log\left(\frac{N + 0.5}{N(w)}\right)$$

where

- $f(w, \mathbf{q})$: term frequency of w in query \mathbf{q}
- $f(w, \mathbf{d})$: term frequency of w in \mathbf{d}
 - $\overline{\mathbf{d}}$: is the average document length of collection \mathcal{C} .
 - k, b : weight parameters determined empirically

<<p>(日)

→ 3 → 4 3

TF.IDF Language Models Problems

Outline

Overview of Term Weighting Methods in Information Retrieval

- Term Weighting based on TF.IDF
- Term Weighting based on Language Models
- Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach
- 3 Experiment
 - Experimental Design
 - Baseline Approaches
 - Experimental Results

4 Summary

TF.IDF Language Models Problems

Term Weighting Methods based on Language Models

- Assume each document ${\bf d}$ is generated by a statistical model θ_d
- Estimate θ_d by maximizing likelihood $p(\mathbf{d}|\theta_d)$
- Usually a smoothing technique, such as Jelink Mercer smoothing and Dirichlet smoothing, is used to deal with the sparse data problem

TF.IDF Language Models Problems

Term Weighting Methods based on Language Models

- Assume each document ${\bf d}$ is generated by a statistical model θ_d
- Estimate θ_d by maximizing likelihood $p(\mathbf{d}|\theta_d)$
- Usually a smoothing technique, such as Jelink Mercer smoothing and Dirichlet smoothing, is used to deal with the sparse data problem

→ 3 → 4 3

TF.IDF Language Models Problems

Term Weighting Methods based on Language Models

- Assume each document ${\bf d}$ is generated by a statistical model θ_d
- Estimate θ_d by maximizing likelihood $p(\mathbf{d}|\theta_d)$
- Usually a smoothing technique, such as Jelink Mercer smoothing and Dirichlet smoothing, is used to deal with the sparse data problem

→ 3 → 4 3

TF.IDF Language Models Problems

An Example of Language models for Information Retrieval

• The unigram language model $p(w|\mathbf{d})$ based on Jelink Mercer smoothing:

$$p(w|\mathbf{d}) = (1-\alpha)p(w|\mathcal{C}) + \alpha \frac{f(w,\mathbf{d})}{|\mathbf{d}|}$$
$$= p(w|\mathcal{C}) \left(1-\alpha + \alpha \frac{f(w,\mathbf{d})}{|\mathbf{d}|p(w|\mathcal{C})}\right)$$

where α is a smoothing parameter.

 $\bullet\,$ The similarity of query ${\bf q}$ to document ${\bf d}$ is estimated as

$$sim(\mathbf{q}, \mathbf{d}) \propto p(\mathbf{q}|\mathbf{d}) \propto \prod_{w \in \mathbf{q}} [p(w|\mathbf{d})]^{f(w,\mathbf{q})}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

TF.IDF Language Models Problems

An Example of Language models for Information Retrieval

• The unigram language model $p(w|\mathbf{d})$ based on Jelink Mercer smoothing:

$$p(w|\mathbf{d}) = (1-\alpha)p(w|\mathcal{C}) + \alpha \frac{f(w,\mathbf{d})}{|\mathbf{d}|}$$
$$= p(w|\mathcal{C}) \left(1-\alpha + \alpha \frac{f(w,\mathbf{d})}{|\mathbf{d}|p(w|\mathcal{C})}\right)$$

where α is a smoothing parameter.

 $\bullet\,$ The similarity of query ${\bf q}$ to document ${\bf d}$ is estimated as

$$sim(\mathbf{q}, \mathbf{d}) \propto p(\mathbf{q}|\mathbf{d}) \propto \prod_{w \in \mathbf{q}} [p(w|\mathbf{d})]^{f(w, \mathbf{q})}$$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

TF.IDF Language Models **Problems**

Outline

Overview of Term Weighting Methods in Information Retrieval

- Term Weighting based on TF.IDF
- Term Weighting based on Language Models
- Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach
- 3 Experiment
 - Experimental Design
 - Baseline Approaches
 - Experimental Results

4 Summary

TF.IDF Language Models **Problems**

Problems with Existing Term Weighting Methods

The essential difficulty with determining term weights is the lack of supervision.

- **Problems with TF.IDF methods** Either IDF or TF is sufficient to determine if a word is informative.
 - IDF factor \rightarrow rare words are informative words
 - But, typos are usually rare and uninformative.
- Problems with language modeling approaches They are generative models → Insufficient to distinguish informative words from uninformative ones

TF.IDF Language Models **Problems**

Problems with Existing Term Weighting Methods

The essential difficulty with determining term weights is the lack of supervision.

- **Problems with TF.IDF methods** Either IDF or TF is sufficient to determine if a word is informative.
 - IDF factor \rightarrow rare words are informative words
 - But, typos are usually rare and uninformative.
- Problems with language modeling approaches They are generative models → Insufficient to distinguish informative words from uninformative ones

TF.IDF Language Models **Problems**

Problems with Existing Term Weighting Methods

The essential difficulty with determining term weights is the lack of supervision.

- **Problems with TF.IDF methods** Either IDF or TF is sufficient to determine if a word is informative.
 - IDF factor \rightarrow rare words are informative words
 - But, typos are usually rare and uninformative.
- Problems with language modeling approaches They are generative models → Insufficient to distinguish informative words from uninformative ones

TF.IDF Language Models **Problems**

Problems with Existing Term Weighting Methods

The essential difficulty with determining term weights is the lack of supervision.

- **Problems with TF.IDF methods** Either IDF or TF is sufficient to determine if a word is informative.
 - IDF factor \rightarrow rare words are informative words
 - But, typos are usually rare and uninformative.

• Problems with language modeling approaches They are generative models →

Insufficient to distinguish informative words from uninformative ones

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Framework A Regression Approach A Probabilistic Approach

Outline

- Overview of Term Weighting Methods in Information Retrieval
 - Term Weighting based on TF.IDF
 - Term Weighting based on Language Models
 - Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information

• A Framework for Learning Term Weights Using Category Information

- A Regression Approach
- A Probabilistic Approach

3 Experiment

- Experimental Design
- Baseline Approaches
- Experimental Results

Summary

Framework A Regression Approach A Probabilistic Approach

Learn Term Weights Using Category Information

- Given: each document is assigned to a set of categories
- Goal: learn term weights from the assigned categories of documents
- Main idea:
 - Each document is represented by both a bag of words and a set of categories
 - Compute document similarity based on word $s_w(\mathbf{d}_i, \mathbf{d}_j)$
 - Compute document similarity based on category $s_c(\mathbf{d}_i, \mathbf{d}_j)$
 - Find term weights $\rightarrow s_w(\mathbf{d}_i, \mathbf{d}_j) \approx s_c(\mathbf{d}_i, \mathbf{d}_j)$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Framework A Regression Approach A Probabilistic Approach

Learn Term Weights Using Category Information

- Given: each document is assigned to a set of categories
- Goal: learn term weights from the assigned categories of documents
- Main idea:
 - Each document is represented by both a bag of words and a set of categories
 - Compute document similarity based on word $s_w(\mathbf{d}_i, \mathbf{d}_j)$
 - Compute document similarity based on category $s_c(\mathbf{d}_i, \mathbf{d}_j)$
 - Find term weights $\rightarrow s_w(\mathbf{d}_i, \mathbf{d}_j) \approx s_c(\mathbf{d}_i, \mathbf{d}_j)$

・ロト ・ 同ト ・ ヨト ・ ヨト

Framework A Regression Approach A Probabilistic Approach

Learn Term Weights Using Category Information

- Given: each document is assigned to a set of categories
- Goal: learn term weights from the assigned categories of documents
- Main idea:
 - Each document is represented by both a bag of words and a set of categories
 - Compute document similarity based on word $s_w(\mathbf{d}_i, \mathbf{d}_j)$
 - Compute document similarity based on category $s_c(\mathbf{d}_i, \mathbf{d}_j)$
 - Find term weights $\rightarrow s_w(\mathbf{d}_i, \mathbf{d}_j) \approx s_c(\mathbf{d}_i, \mathbf{d}_j)$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Framework A Regression Approach A Probabilistic Approach

Learn Term Weights Using Category Information

- Given: each document is assigned to a set of categories
- Goal: learn term weights from the assigned categories of documents
- Main idea:
 - Each document is represented by both a bag of words and a set of categories
 - Compute document similarity based on word $s_w(\mathbf{d}_i, \mathbf{d}_j)$
 - Compute document similarity based on category $s_c(\mathbf{d}_i, \mathbf{d}_j)$
 - Find term weights $\rightarrow s_w(\mathbf{d}_i, \mathbf{d}_j) \approx s_c(\mathbf{d}_i, \mathbf{d}_j)$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Framework for Learning Term Weights Using Category Information

• For each document \mathbf{d}_i , we have

Word based Rep. $\mathbf{w}_i = (w_{i,1}, w_{i,2}, ..., w_{i,n})^T$ Category based Rep. $\mathbf{c}_i = (c_{i,1}, c_{i,2}, ..., c_{i,n})^T$

• Word based document similarity

$$s_w(\mathbf{d}_i, \mathbf{d}_j; \mu) = \sum_{k=1}^m \mu_k w_{i,k} w_{j,k}$$

• Category based document similarity

$$s_c(\mathbf{d}_i, \mathbf{d}_j; \eta) = \sum_{k=1}^m \eta_k c_{i,k} c_{j,k}$$

.

Overview Learn Term Weights Experiment Summary Hearn A Probabilistic Approach

A Framework for Learning Term Weights Using Category Information

• For each document \mathbf{d}_i , we have

Word based Rep. $\mathbf{w}_i = (w_{i,1}, w_{i,2}, ..., w_{i,n})^T$ Category based Rep. $\mathbf{c}_i = (c_{i,1}, c_{i,2}, ..., c_{i,n})^T$

• Word based document similarity

$$s_w(\mathbf{d}_i, \mathbf{d}_j; \mu) = \sum_{k=1}^m \mu_k w_{i,k} w_{j,k}$$

• Category based document similarity

$$s_c(\mathbf{d}_i, \mathbf{d}_j; \eta) = \sum_{k=1}^m \eta_k c_{i,k} c_{j,k}$$

Framework A Regression Approach A Probabilistic Approach

A Framework for Learning Term Weights Using Category Information (Cont'd)

• Find weights η and μ s.t. $s_w(\mathbf{d}_i, \mathbf{d}_j; \mu) \approx s_c(\mathbf{d}_i, \mathbf{d}_j; \eta)$ for any two documents \mathbf{d}_i and \mathbf{d}_j

$$(\eta^*, \mu^*) = \arg\min_{\eta, \mu} \sum_{i \neq j} l(s_c(\mathbf{d}_i, \mathbf{d}_j; \eta), s_w(\mathbf{d}_i, \mathbf{d}_j; \mu))$$

where l(x, y) is a loss function measures the difference between x and y.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Framework A Regression Approach A Probabilistic Approach

Outline

- Overview of Term Weighting Methods in Information Retrieval
 - Term Weighting based on TF.IDF
 - Term Weighting based on Language Models
 - Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach
 - B Experiment
 - Experimental Design
 - Baseline Approaches
 - Experimental Results
 - 4 Summary

Framework A Regression Approach A Probabilistic Approach

A Regression Approach Toward Learning Term Weights

• Define loss function $l(s_c, s_w) = ||s_c - s_w||^2$

• Objective function \mathcal{F}_{reg}

$$\mathcal{F}_{reg} = (\eta^T, \mu^T) \begin{pmatrix} Q_c & -P^T \\ -P & Q_w \end{pmatrix} \begin{pmatrix} \eta \\ \mu \end{pmatrix}$$

where

 $[Q_w]_{i,j} = (\mathbf{u}_i^T \mathbf{u}_j)^2, [Q_c]_{i,j} = (\mathbf{v}_i^T \mathbf{v})^2, [P]_{i,j} = (\mathbf{u}_i^T \mathbf{v}_j)^2$ $\mathbf{u}_i: \text{ frequency vector for the } i\text{-th term}$ $\mathbf{v}_i: \text{ frequency vector for the } j\text{-th category}$

(日) (四) (日) (日)

A Regression Approach Toward Learning Term Weights

- Define loss function $l(s_c, s_w) = ||s_c s_w||^2$
- Objective function \mathcal{F}_{reg}

$$\mathcal{F}_{reg} = (\eta^T, \mu^T) \begin{pmatrix} Q_c & -P^T \\ -P & Q_w \end{pmatrix} \begin{pmatrix} \eta \\ \mu \end{pmatrix}$$

where

$$\begin{split} [Q_w]_{i,j} &= (\mathbf{u}_i^T \mathbf{u}_j)^2, [Q_c]_{i,j} = (\mathbf{v}_i^T \mathbf{v})^2, [P]_{i,j} = (\mathbf{u}_i^T \mathbf{v}_j)^2 \\ \mathbf{u}_i : & \text{frequency vector for the } i\text{-th term} \\ \mathbf{v}_i : & \text{frequency vector for the } j\text{-th category} \end{split}$$

(日) (四) (日) (日)

Framework A Regression Approach A Probabilistic Approach

The Regression Approach: Constraints

- Trivial solution $\eta = \mu = 0 \rightarrow \mathcal{F}_{reg} = 0$
- L2 Constraint:

$$\|\eta\|_2^2 + \|\mu\|_2^2 \ge 1$$

- Problem: negative term weight μ_i < 0

 → When two documents share word w_i, they are less likely to be similar
- L1 Constraint:

$$\eta_i \ge 0; \quad \mu_j \ge 0$$
$$\sum_{i=1}^m \eta_i + \sum_{i=1}^n \mu_i \ge 1$$

イロト イヨト イヨト イヨト

Framework A Regression Approach A Probabilistic Approach

The Regression Approach: Constraints

- Trivial solution $\eta = \mu = 0 \rightarrow \mathcal{F}_{reg} = 0$
- L2 Constraint:

 $\|\eta\|_2^2 + \|\mu\|_2^2 \ge 1$

Problem: negative term weight μ_i < 0
 → When two documents share word w_i, they are less likely
 to be similar

• L1 Constraint:

$$\eta_i \ge 0; \quad \mu_j \ge 0$$
$$\sum_{i=1}^m \eta_i + \sum_{i=1}^n \mu_i \ge 1$$

< ロト < 同ト < ヨト < ヨト

Framework A Regression Approach A Probabilistic Approach

The Regression Approach: Constraints

- Trivial solution $\eta = \mu = 0 \rightarrow \mathcal{F}_{reg} = 0$
- L2 Constraint:

$$\|\eta\|_2^2 + \|\mu\|_2^2 \ge 1$$

- Problem: negative term weight μ_i < 0

 → When two documents share word w_i, they are less likely to be similar
- L1 Constraint:

$$\eta_i \ge 0; \quad \mu_j \ge 0$$
$$\sum_{i=1}^m \eta_i + \sum_{i=1}^n \mu_i \ge 1$$

Framework A Regression Approach A Probabilistic Approach

The Regression Approach: Constraints

- Trivial solution $\eta = \mu = 0 \rightarrow \mathcal{F}_{reg} = 0$
- L2 Constraint:

$$\|\eta\|_2^2 + \|\mu\|_2^2 \ge 1$$

- Problem: negative term weight $\mu_i < 0$ \rightarrow When two documents share word w_i , they are less likely to be similar
- L1 Constraint:

$$\eta_i \ge 0; \quad \mu_j \ge 0$$
$$\sum_{i=1}^m \eta_i + \sum_{i=1}^n \mu_i \ge 1$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Framework A Regression Approach A Probabilistic Approach

The Regression Approach: Final Form

• Final form for the regression approach

$$\begin{array}{ll} \min_{\eta,\mu} & (\eta^T,\mu^T) \left(\begin{array}{cc} Q_c & -P^T \\ -P & Q_w \end{array} \right) \left(\begin{array}{c} \eta \\ \mu \end{array} \right) \\ \text{s. t} & \eta \succeq \mathbf{0}, \ \mu \succeq \mathbf{0} \\ & \|\eta\|_1 + \|\mu\|_1 \ge 1 \end{array} \end{array}$$

• Solve by quadratic programming techiques

Image: Image:

Framework A Regression Approach A Probabilistic Approach

Outline

- Overview of Term Weighting Methods in Information Retrieval
 - Term Weighting based on TF.IDF
 - Term Weighting based on Language Models
 - Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach
 - Experiment
 - Experimental Design
 - Baseline Approaches
 - Experimental Results
 - 4 Summary

A Probabilistic Approach Toward Learning Term Weights

• Probability for documents to be similar based on words

$$p_{i,j}^{w} = \frac{1}{1 + \exp(-s_w(\mathbf{d}_i, \mathbf{d}_j; \mu) + \mu_0)}$$

• Probability for documents to be similar based on categories

$$p_{i,j}^c = \frac{1}{1 + \exp\left(-s_c(\mathbf{d}_i, \mathbf{d}_j; \eta) + \eta_0\right)}$$

• Loss function: cross entropy function

$$l(s_c(\mathbf{d}_i, \mathbf{d}_j; \eta), s_w(\mathbf{d}_i, \mathbf{d}_j; \mu)) = -p_{i,j}^c \log p_{i,j}^w - (1 - p_{i,j}^c) \log(1 - p_{i,j}^w)$$

A Probabilistic Approach Toward Learning Term Weights

• Probability for documents to be similar based on words

$$p_{i,j}^{w} = \frac{1}{1 + \exp(-s_w(\mathbf{d}_i, \mathbf{d}_j; \mu) + \mu_0)}$$

• Probability for documents to be similar based on categories

$$p_{i,j}^c = \frac{1}{1 + \exp\left(-s_c(\mathbf{d}_i, \mathbf{d}_j; \eta) + \eta_0\right)}$$

• Loss function: cross entropy function

Framework A Regression Approach A Probabilistic Approach

The Probabilistic Approach: Final Form

• Objective function \mathcal{F}_{prob}

$$\mathcal{F}_{prob} = \sum_{i \neq j}^{N} p_{i,j}^{c} \log p_{i,j}^{w} + (1 - p_{i,j}^{c}) \log(1 - p_{i,j}^{w})$$

• The final form for the probabilistic approach:

$$\arg \max_{\eta,\mu,\eta_0,\mu_0} \quad \mathcal{F}_{prob} - \alpha_w \sum_{i=1}^n \mu_i - \alpha_c \sum_{i=1}^m \eta_i$$

s. t.
$$\eta \succeq 0, \ \mu \succeq 0$$

where $\alpha_w > 0$ and $\alpha_c > 0$ are regularization parameters.

・ロト ・ 同ト ・ ヨト ・ ヨト

The Probabilistic Approach: Optimization Strategy

Alternating Optimization

- Learn term weights μ with fixed category weights η
 - Decouple the correlation among μ

$$\mathcal{F}_{prob}(\mu',\eta) - \mathcal{F}_{prob}(\mu,\eta) \ge \sum_{i=1}^{n} g_i(\mu'_i - \mu_i)$$

 μ' and μ are term weights of two consecutive iterations. \bullet Solve

$$g'_i(\delta_i) = 0 \to \mu' = \mu + \delta$$

- Learn category weights η with fixed term weights μ
 - A similar procedure for optimizing η with fixed μ

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Probabilistic Approach: Optimization Strategy

Alternating Optimization

- Learn term weights μ with fixed category weights η
 - Decouple the correlation among μ

$$\mathcal{F}_{prob}(\mu',\eta) - \mathcal{F}_{prob}(\mu,\eta) \ge \sum_{i=1}^{n} g_i(\mu'_i - \mu_i)$$

 μ' and μ are term weights of two consecutive iterations. $\bullet~$ Solve

$$g'_i(\delta_i) = 0 \to \mu' = \mu + \delta$$

- Learn category weights η with fixed term weights μ
 - A similar procedure for optimizing η with fixed μ

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Probabilistic Approach: Optimization Strategy

Alternating Optimization

- Learn term weights μ with fixed category weights η
 - Decouple the correlation among μ

$$\mathcal{F}_{prob}(\mu',\eta) - \mathcal{F}_{prob}(\mu,\eta) \ge \sum_{i=1}^{n} g_i(\mu'_i - \mu_i)$$

 μ' and μ are term weights of two consecutive iterations. \bullet Solve

$$g'_i(\delta_i) = 0 \to \mu' = \mu + \delta$$

• Learn category weights η with fixed term weights μ

• A similar procedure for optimizing η with fixed μ

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A

The Probabilistic Approach: Optimization Strategy

Alternating Optimization

- Learn term weights μ with fixed category weights η
 - Decouple the correlation among μ

$$\mathcal{F}_{prob}(\mu',\eta) - \mathcal{F}_{prob}(\mu,\eta) \ge \sum_{i=1}^{n} g_i(\mu'_i - \mu_i)$$

 μ' and μ are term weights of two consecutive iterations. $\bullet~$ Solve

$$g'_i(\delta_i) = 0 \to \mu' = \mu + \delta$$

- Learn category weights η with fixed term weights μ
 - A similar procedure for optimizing η with fixed μ

Experimental Design Baseline Approaches Experimental Results

Outline

- Overview of Term Weighting Methods in Information Retrieval
 - Term Weighting based on TF.IDF
 - Term Weighting based on Language Models
 - Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach

3 Experiment

- Experimental Design
- Baseline Approaches
- Experimental Results

Summary

Experimental Design Baseline Approaches Experimental Results

Experimental Design

- Document collection
 - A document collection from the ad hoc retrieval task of ImageCLEF
 - Totally 28,133 documents, 933 categories
 - Average document length ~ 50
 - Average number of categories for a document ~ 5
- Evaluation Queries
 - 5 queries from ImageCLEF 2003 for training α_w and α_c
 - 25 queries from ImageCLEF 2004 for testing
- Evaluation metrics
 - Average precision for top retried documents
 - Average precision across 11 recall points
 - Precision recall curve

Experimental Design Baseline Approaches Experimental Results

Experimental Design

- Document collection
 - A document collection from the ad hoc retrieval task of ImageCLEF
 - Totally 28,133 documents, 933 categories
 - Average document length ~ 50
 - Average number of categories for a document ~ 5
- Evaluation Queries
 - 5 queries from ImageCLEF 2003 for training α_w and α_c
 - 25 queries from ImageCLEF 2004 for testing
- Evaluation metrics
 - Average precision for top retried documents
 - Average precision across 11 recall points
 - Precision recall curve

Experimental Design Baseline Approaches Experimental Results

Experimental Design

- Document collection
 - A document collection from the ad hoc retrieval task of ImageCLEF
 - Totally 28,133 documents, 933 categories
 - Average document length ~ 50
 - Average number of categories for a document ~ 5
- Evaluation Queries
 - 5 queries from ImageCLEF 2003 for training α_w and α_c
 - 25 queries from ImageCLEF 2004 for testing
- Evaluation metrics
 - Average precision for top retried documents
 - Average precision across 11 recall points
 - Precision recall curve

Experimental Design Baseline Approaches Experimental Results

Outline

- Overview of Term Weighting Methods in Information Retrieval
 - Term Weighting based on TF.IDF
 - Term Weighting based on Language Models
 - Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach

3 Experiment

- Experimental Design
- Baseline Approaches
- Experimental Results

Summary

Experimental Design Baseline Approaches Experimental Results

Baseline Approaches

- State-of-art information retrieval methods
 - The Okapi method (Okapi)
 - $\bullet\,$ The language model with JM smoothing $({\bf LM})$
- Inverse category frequency (ICF)

$$icf(w) = \log\left(\frac{m}{m(w)}\right)$$

m(w) : number of categories having word w

• Replace idf(w) with icf(w) in the Okapi method

・ロト ・ 同ト ・ ヨト ・ ヨト

Experimental Design Baseline Approaches Experimental Results

Baseline Approaches (Cont'd)

- \bullet Category-based query expansion $({\bf CQE})$
 - Retrieve top k = 100 documents for query q using Okapi
 Expand query q to include category information

$$\mathbf{q}' = \{f(w_1, \mathbf{q}), ..., f(w_n, \mathbf{q}); f(c_1, \mathbf{q}), ..., f(c_m, \mathbf{q})\}$$

 $f(c_i, \mathbf{q})$: the number of top k documents in category c_i

3 Retrieve documents using the expanded query \mathbf{q}'

$$\log p(\mathbf{q}'|\mathbf{d}) = \frac{\beta \sum_{i=1}^{n} f(w_i, \mathbf{q}) \log p(w_i|\mathbf{d})}{\sum_{i=1}^{n} f(w_i, \mathbf{q})} + \frac{(1-\beta) \sum_{i=1}^{m} f(c_i, \mathbf{q}) \log p(c_i|\mathbf{d})}{\sum_{i=1}^{m} f(c_i, \mathbf{q})}$$

(日) (四) (日) (日)

Experimental Design Baseline Approaches Experimental Results

Outline

- Overview of Term Weighting Methods in Information Retrieval
 - Term Weighting based on TF.IDF
 - Term Weighting based on Language Models
 - Problems with Existing Term Weighting Methods
- 2 Learn Term Weights Using Category Information
 - A Framework for Learning Term Weights Using Category Information
 - A Regression Approach
 - A Probabilistic Approach

3 Experiment

- Experimental Design
- Baseline Approaches
- Experimental Results

Summary

Experimental Design Baseline Approaches Experimental Results

Precision Recall Curves

• Probabilistic approach > Language Model & Okapi

Experimental Design Baseline Approaches Experimental Results

Average Precision

	Using Category				No Category	
	Reg.	Prob.	ICF	CQE	Okapi	LM
Avg. Prec.	0.45	0.48	0.38	0.42	0.41	0.41
Prec @ 5 doc	0.55	0.56	0.40	0.50	0.47	0.50
Prec @ 10 doc	0.48	0.52	0.40	0.48	0.45	0.48
Prec @ 20 doc	0.46	0.46	0.39	0.42	0.39	0.38
$\operatorname{Prec} @ 100 \operatorname{doc}$	0.21	0.21	0.19	0.19	0.20	0.20

- \bullet Reg. and Prob. > Okapi and LM
 - Category information is useful
- $\bullet~{\rm ICF}$ and ${\rm CQE}$ < Okapi and LM
 - Need to exploit category information wisely

Experimental Design Baseline Approaches Experimental Results

Retrieval Precision for Individual Queries

- Over 16 queries, probabilistic approach > langauge model
- $\bullet\,$ Over 5 queries, probabilistic approach < langauge model

4 AP

- Proposed two algorithms for learning term weights using category information
 - A regression approach
 - A probabilistic approach
- Empirical studies with the ImageCLEF dataset verify the effectiveness of the proposed algorithms
- Future work
 - Improve learning efficiency for large numbers of documents and large-sized vocabularies
 - Extend to image retrieval for annotated images