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Term Weighting Methods based on TF.IDF

Most popular methods in information retrieval.
Consist of three factors

Term frequency (TF): f(w,d)
- How frequent does the term w appear in document d
Inverse document frequency (IDF):
- How rare is term w in a collection C

idf(w) = log
(

N + 0.5
N(w)

)
N : the total number of documents in collection C

N(w) : the number of documents in C having word w

Document normalization factor, e.g. ‖d‖2
- Reduce the bias of long documents
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Okapi: An Example of TF.IDF Term Weighting

Similarity between query q and document d is:

sim(d,q) =
∑
w∈q

kf(w,q)f(w,d)

f(w,d) + k(1− b + b |d|
d

)
log

(
N + 0.5
N(w)

)
where

f(w,q) : term frequency of w in query q

f(w,d) : term frequency of w in d

d : is the average document length of collection C.

k, b : weight parameters determined empirically
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Term Weighting Methods based on Language Models

Assume each document d is generated by a statistical
model θd

Estimate θd by maximizing likelihood p(d|θd)
Usually a smoothing technique, such as Jelink Mercer
smoothing and Dirichlet smoothing, is used to deal with
the sparse data problem
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An Example of Language models for Information
Retrieval

The unigram language model p(w|d) based on Jelink
Mercer smoothing:

p(w|d) = (1− α)p(w|C) + α
f(w,d)
|d|

= p(w|C)
(

1− α + α
f(w,d)
|d|p(w|C)

)
where α is a smoothing parameter.
The similarity of query q to document d is estimated as

sim(q,d) ∝ p(q|d) ∝
∏
w∈q

[p(w|d)]f(w,q)
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Problems with Existing Term Weighting Methods

The essential difficulty with determining term weights is the
lack of supervision.

Problems with TF.IDF methods
Either IDF or TF is sufficient to determine if a word is
informative.

IDF factor → rare words are informative words
But, typos are usually rare and uninformative.

Problems with language modeling approaches
They are generative models →
Insufficient to distinguish informative words from
uninformative ones
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Learn Term Weights Using Category Information

Given: each document is assigned to a set of categories
Goal: learn term weights from the assigned categories of
documents
Main idea:

Each document is represented by both a bag of words and a
set of categories
Compute document similarity based on word sw(di,dj)
Compute document similarity based on category sc(di,dj)
Find term weights → sw(di,dj) ≈ sc(di,dj)
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A Framework for Learning Term Weights Using
Category Information

For each document di, we have

Word based Rep. wi = (wi,1, wi,2, ..., wi,n)T

Category based Rep. ci = (ci,1, ci,2, ..., ci,n)T

Word based document similarity

sw(di,dj ;µ) =
m∑

k=1

µkwi,kwj,k

Category based document similarity

sc(di,dj ; η) =
m∑

k=1

ηkci,kcj,k

Jin, Chai, and Si Learn to Weight Terms



Overview
Learn Term Weights

Experiment
Summary

Framework
A Regression Approach
A Probabilistic Approach

A Framework for Learning Term Weights Using
Category Information

For each document di, we have

Word based Rep. wi = (wi,1, wi,2, ..., wi,n)T

Category based Rep. ci = (ci,1, ci,2, ..., ci,n)T

Word based document similarity

sw(di,dj ;µ) =
m∑

k=1

µkwi,kwj,k

Category based document similarity

sc(di,dj ; η) =
m∑

k=1

ηkci,kcj,k

Jin, Chai, and Si Learn to Weight Terms



Overview
Learn Term Weights

Experiment
Summary

Framework
A Regression Approach
A Probabilistic Approach

A Framework for Learning Term Weights Using
Category Information (Cont’d)

Find weights η and µ s.t. sw(di,dj ;µ) ≈ sc(di,dj ; η) for
any two documents di and dj

(η∗, µ∗) = arg min
η,µ

∑
i6=j

l(sc(di,dj ; η), sw(di,dj ;µ))

where l(x, y) is a loss function measures the difference
between x and y.

Jin, Chai, and Si Learn to Weight Terms
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A Regression Approach Toward Learning Term Weights

Define loss function l(sc, sw) = ‖sc − sw‖2

Objective function Freg

Freg = (ηT , µT )
(

Qc −P T

−P Qw

) (
η
µ

)
where

[Qw]i,j = (uT
i uj)2, [Qc]i,j = (vT

i v)2, [P ]i,j = (uT
i vj)2

ui : frequency vector for the i-th term
vi : frequency vector for the j-th category
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The Regression Approach: Constraints

Trivial solution η = µ = 0 → Freg = 0
L2 Constraint:

‖η‖2
2 + ‖µ‖2

2 ≥ 1

Problem: negative term weight µi < 0
→ When two documents share word wi, they are less likely
to be similar

L1 Constraint:

ηi ≥ 0; µj ≥ 0
m∑

i=1

ηi +
n∑

i=1

µi ≥ 1

Jin, Chai, and Si Learn to Weight Terms
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The Regression Approach: Final Form

Final form for the regression approach

min
η,µ

(ηT , µT )
(

Qc −P T

−P Qw

) (
η
µ

)
s. t η � 0, µ � 0

‖η‖1 + ‖µ‖1 ≥ 1

Solve by quadratic programming techiques
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A Probabilistic Approach Toward Learning Term
Weights

Probability for documents to be similar based on words

pw
i,j =

1
1 + exp (−sw(di,dj ;µ) + µ0)

Probability for documents to be similar based on categories

pc
i,j =

1
1 + exp (−sc(di,dj ; η) + η0)

Loss function: cross entropy function

l(sc(di,dj ; η), sw(di,dj ;µ)) =
−pc

i,j log pw
i,j − (1− pc

i,j) log(1− pw
i,j)
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The Probabilistic Approach: Final Form

Objective function Fprob

Fprob =
N∑

i6=j

pc
i,j log pw

i,j + (1− pc
i,j) log(1− pw

i,j)

The final form for the probabilistic approach:

arg max
η,µ,η0,µ0

Fprob − αw

n∑
i=1

µi − αc

m∑
i=1

ηi

s. t. η � 0, µ � 0

where αw > 0 and αc > 0 are regularization parameters.
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The Probabilistic Approach: Optimization Strategy

Alternating Optimization
Learn term weights µ with fixed category weights η

Decouple the correlation among µ

Fprob(µ′, η)−Fprob(µ, η) ≥
n∑

i=1

gi(µ′
i − µi)

µ′ and µ are term weights of two consecutive iterations.
Solve

g′
i(δi) = 0 → µ′ = µ + δ

Learn category weights η with fixed term weights µ

A similar procedure for optimizing η with fixed µ

Jin, Chai, and Si Learn to Weight Terms
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Experimental Design

Document collection
A document collection from the ad hoc retrieval task of
ImageCLEF
Totally 28,133 documents, 933 categories
Average document length ∼ 50
Average number of categories for a document ∼ 5

Evaluation Queries
5 queries from ImageCLEF 2003 for training αw and αc

25 queries from ImageCLEF 2004 for testing
Evaluation metrics

Average precision for top retried documents
Average precision across 11 recall points
Precision recall curve
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Baseline Approaches

State-of-art information retrieval methods
The Okapi method (Okapi)
The language model with JM smoothing (LM)

Inverse category frequency (ICF)

icf(w) = log
(

m

m(w)

)
m(w) : number of categories having word w

Replace idf(w) with icf(w) in the Okapi method
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Baseline Approaches (Cont’d)

Category-based query expansion (CQE)
1 Retrieve top k = 100 documents for query q using Okapi
2 Expand query q to include category information

q′ = {f(w1,q), ..., f(wn,q); f(c1,q), ..., f(cm,q)}
f(ci,q) : the number of top k documents in category ci

3 Retrieve documents using the expanded query q′

log p(q′|d) =
β

∑n
i=1 f(wi,q) log p(wi|d)∑n

i=1 f(wi,q)

+
(1− β)

∑m
i=1 f(ci,q) log p(ci|d)∑m

i=1 f(ci,q)
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Precision Recall Curves
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Probabilistic approach > Language Model & Okapi
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Average Precision

Using Category No Category
Reg. Prob. ICF CQE Okapi LM

Avg. Prec. 0.45 0.48 0.38 0.42 0.41 0.41
Prec @ 5 doc 0.55 0.56 0.40 0.50 0.47 0.50
Prec @ 10 doc 0.48 0.52 0.40 0.48 0.45 0.48
Prec @ 20 doc 0.46 0.46 0.39 0.42 0.39 0.38
Prec @ 100 doc 0.21 0.21 0.19 0.19 0.20 0.20

Reg. and Prob. > Okapi and LM
- Category information is useful
ICF and CQE < Okapi and LM
- Need to exploit category information wisely
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Retrieval Precision for Individual Queries
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Probabilistic

Over 16 queries, probabilistic approach > langauge model
Over 5 queries, probabilistic approach < langauge model
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Summary

Proposed two algorithms for learning term weights using
category information

A regression approach
A probabilistic approach

Empirical studies with the ImageCLEF dataset verify the
effectiveness of the proposed algorithms
Future work

Improve learning efficiency for large numbers of documents
and large-sized vocabularies
Extend to image retrieval for annotated images
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