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Term Weighting Methods based on TF.IDF

@ Most popular methods in information retrieval.

@ Consist of three factors

Term frequency (TF): f(w,d)

- How frequent does the term w appear in document d
Inverse document frequency (IDF):

- How rare is term w in a collection C

N +0.5
Xe) = 1 —_
i) = tog (S
N : the total number of documents in collection C
N(w) : the number of documents in C having word w
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Term Weighting Methods based on TF.IDF

@ Most popular methods in information retrieval.
o Consist of three factors
o Term frequency (TF): f(w,d)
- How frequent does the term w appear in document d
o Inverse document frequency (IDF):
- How rare is term w in a collection C

N +0.5
Xe) = 1 —_
i) = tog (S
N : the total number of documents in collection C
N(w) : the number of documents in C having word w

o Document normalization factor, e.g. ||d]|2
- Reduce the bias of long documents
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Similarity between query q and document d is:

sim(d,q) = kfw,@f(wd) <N+0.5)

i flw.d) + k(1 =D+ blgh T\ N (W)
where
f(w,q) term frequency of w in query q
f(w,d) term frequency of w in d
d : is the average document length of collection C.
k,b

weight parameters determined empirically
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model 0,
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Overview TF.IDF
Language Models
Problems

Term Weighting Methods based on Language Models

o Assume each document d is generated by a statistical
model 0,
e Estimate 6; by maximizing likelihood p(d|6;)

o Usually a smoothing technique, such as Jelink Mercer
smoothing and Dirichlet smoothing, is used to deal with
the sparse data problem
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An Example of Language models for Information
Retrieval

e The unigram language model p(w|d) based on Jelink
Mercer smoothing;:

plwld) = (1-a)p(wlC)+al (ﬁ;’ d)
e S
= pllC) <1 * d|p<w|c>>

where « is a smoothing parameter.
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Language Models
Problems

An Example of Language models for Information
Retrieval

e The unigram language model p(w|d) based on Jelink
Mercer smoothing;:

plwld) = (1-a)p(wlC)+al (ﬁ;’|d)
e S
= pllC) <1 * d|p<w|c>>

where « is a smoothing parameter.

o The similarity of query q to document d is estimated as

sim(q, d) o< p(a|d) o< [] [p(w|d))’ )
weq
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lack of supervision.
o Problems with TF.IDF methods

Either IDF or TF is sufficient to determine if a word is
informative.

Jin, Chai, and Si Learn to Weight Terms



Overview

Problems with Existing Term Weighting Methods

The essential difficulty with determining term weights is the
lack of supervision.
o Problems with TF.IDF methods

Either IDF or TF is sufficient to determine if a word is
informative.

o IDF factor — rare words are informative words
e But, typos are usually rare and uninformative.
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Overview

Problems with Existing Term Weighting Methods

The essential difficulty with determining term weights is the
lack of supervision.
o Problems with TF.IDF methods
Either IDF or TF is sufficient to determine if a word is
informative.
o IDF factor — rare words are informative words
e But, typos are usually rare and uninformative.
e Problems with language modeling approaches
They are generative models —
Insufficient to distinguish informative words from
uninformative ones
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Learn Term Weights Using Category Information

o Given: each document is assigned to a set of categories

o Goal: learn term weights from the assigned categories of
documents
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A Pr tic Approach

Learn Term Weights Using Category Information

o Given: each document is assigned to a set of categories

o Goal: learn term weights from the assigned categories of
documents
o Main idea:

o Each document is represented by both a bag of words and a
set of categories
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A Pr tic Approach

Learn Term Weights Using Category Information

o Given: each document is assigned to a set of categories

o Goal: learn term weights from the assigned categories of
documents
o Main idea:
o Each document is represented by both a bag of words and a
set of categories
o Compute document similarity based on word s,,(d;,d;)
o Compute document similarity based on category s.(d;,d;)
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A Pr tic Approach

Learn Term Weights Using Category Information

o Given: each document is assigned to a set of categories

o Goal: learn term weights from the assigned categories of
documents
o Main idea:
o Each document is represented by both a bag of words and a
set of categories
o Compute document similarity based on word s,,(d;,d;)
o Compute document similarity based on category s.(d;,d;)
o Find term weights — s,,(d;,d;) =~ s.(d;,d;)
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A Framework for Learning Term Weights Using

Category Information

o For each document d;, we have
Word based Rep. w; = (w;1,w;2, ..., wm)T

Category based Rep. ¢; = (c¢i1,¢i2, ...,ci’n)T
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A Framework for Learning Term Weights Using

Category Information
o For each document d;, we have

Word based Rep. w; = (w;1,w;2, ..., wm)T

Category based Rep. ¢; = (c¢i1,¢i2, ...,ci’n)T
e Word based document similarity
m
sw(di, djs ) = D prwi gwj i
k=1
o Category based document similarity

m
se(diydjsn) = MkcikCin
k=1
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A Framework for Learning Term Weights Using
Category Information (Cont’d)

e Find weights n and p s.t. s,(d;, dj; p) = sc(dy, dj;n) for
any two documents d; and d;

(n*,n*) = argrg?anZl(sc(di,dj;n%sw(di,dj;u))
Uiy

where [(z,y) is a loss function measures the difference
between x and y.
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A Regression Approach Toward Learning Term Weights

e Define loss function (s, 54) = ||s¢ — Swl|?
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Learn Term Weights

A Regression Approach Toward Learning Term Weights

e Define loss function (s, 54) = ||s¢ — Swl|?

e Objective function Fr.qq
_pT n
fre — T7 T ( Qc )( >
where

T, 2 T )2 T 12
[Qulij = (ui ;)% [Qcliy = (vi V)", [Plij = (ujvj)
u; : frequency vector for the i-th term
v; . frequency vector for the j-th category
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The Regression Approach: Constraints

@ Trivial solution n =p =0 — Fpeg =0
o L2 Constraint:

713 + N3 > 1
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The Regression Approach: Constraints

@ Trivial solution n =p =0 — Fpeg =0
o L2 Constraint:

713 + N3 > 1

e Problem: negative term weight p; < 0
— When two documents share word w;, they are less likely
to be similar
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tic Approach

The Regression Approach: Constraints

@ Trivial solution n =p =0 — Fpeg =0
o L2 Constraint:

713 + N3 > 1

e Problem: negative term weight p; < 0
— When two documents share word w;, they are less likely
to be similar

o L1 Constraint:

i >0; p; >0

m n
dom+d w1
=1 =1
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The Regression Approach: Final Form

o Final form for the regression approach

: v [ Qe —PT 77)
min ,

1,1 (n M)<—P Qu )(/J
s.t n=0, n=0

Il + el = 1

@ Solve by quadratic programming techiques
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A Probabilistic Approach Toward Learning Term
Weights

o Probability for documents to be similar based on words

1
1+ exp (—sw(di, d;j; 1) + o)

w —
Pij =

@ Probability for documents to be similar based on categories

1
1+ exp (—sc(ds, djsn) +m0)

c —
Pij =
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A Probabilistic Approach Toward Learning Term
Weights

o Probability for documents to be similar based on words

1
1+ exp (—sw(di, d;j; 1) + o)

w —
Pij =

@ Probability for documents to be similar based on categories

1
1+ exp (—sc(ds, djsn) +m0)

c —
Pij =

o Loss function: cross entropy function

l(se(ds, dj;m), sw(di, djs 1)) =
—pf jlogpi’; — (1 —pf ;) log(1 — pi’;)
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Learn Term Weights
A Pr

The Probabilistic Approach: Final Form

o Objective function Fp,qp

Foprob pr] log pi’; + (1 — pf ;) log(1 — p}%)
i#j

@ The final form for the probabilistic approach:

n m
arg max j:prob — Qy E i — Qe E Ni
i=1 =1

51457040
s. t. n>=0, u=0

where a,, > 0 and «a, > 0 are regularization parameters.
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The Probabilistic Approach: Optimization Strategy

Alternating Optimization
@ Learn term weights u with fixed category weights n
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The Probabilistic Approach: Optimization Strategy

Alternating Optimization
@ Learn term weights u with fixed category weights n
e Decouple the correlation among u

fp’r‘ob(,u/a 77) ;Drob u, > Zgz Nz

' and p are term weights of two consecutive iterations.
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The Probabilistic Approach: Optimization Strategy

Alternating Optimization
@ Learn term weights u with fixed category weights n
e Decouple the correlation among u

fp’r‘ob(,u/a 77) ;Drob u, > Zgz Nz

' and p are term weights of two consecutive iterations.
e Solve

9:(0) =0— ' =p+4

Jin, Chai, and Si Learn to Weight Terms



Learn Term Weights
A Pr

The Probabilistic Approach: Optimization Strategy

Alternating Optimization
@ Learn term weights u with fixed category weights n
e Decouple the correlation among u

fp’r‘ob(,u/a 77) ;Drob u, > Zgz Nz

' and p are term weights of two consecutive iterations.
e Solve

9:(0) =0— ' =p+4

o Learn category weights n with fixed term weights p

e A similar procedure for optimizing n with fixed p
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Experiment = A S
Experimental Results

Experimental Design

@ Document collection

o A document collection from the ad hoc retrieval task of
ImageCLEF

o Totally 28,133 documents, 933 categories

e Average document length ~ 50

o Average number of categories for a document ~ 5

Jin, Chai, and Si Learn to Weight Terms



Expel imental Desl&n

Experiment
rimental Re anH

Experimental Design

@ Document collection

o A document collection from the ad hoc retrieval task of
ImageCLEF

o Totally 28,133 documents, 933 categories

e Average document length ~ 50

o Average number of categories for a document ~ 5

o Evaluation Queries

e 5 queries from ImageCLEF 2003 for training v, and a
e 25 queries from ImageCLEF 2004 for testing
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Experimental Design
Baseline Approaches

Experiment = A S
Experimental Results

Experimental Design

@ Document collection

o A document collection from the ad hoc retrieval task of
ImageCLEF

o Totally 28,133 documents, 933 categories

e Average document length ~ 50

o Average number of categories for a document ~ 5

o Evaluation Queries
e 5 queries from ImageCLEF 2003 for training o, and a.
e 25 queries from ImageCLEF 2004 for testing
o Evaluation metrics
o Average precision for top retried documents
e Average precision across 11 recall points
e Precision recall curve
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Experiment

Baseline Approaches

o State-of-art information retrieval methods

o The Okapi method (Okapi)
o The language model with JM smoothing (LM)

e Inverse category frequency (ICF)

icf(w) = log (nﬂ)))

m(w) :  number of categories having word w

o Replace idf (w) with icf(w) in the Okapi method
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Baseline Approaches (Cont’d)

e Category-based query expansion (CQE)

@ Retrieve top k = 100 documents for query q using Okapi
@ Expand query q to include category information

ql = {f(wlaq)a"'7f(wn7q);f(clvq)a"'af(cmaq)}

flei,q) :  the number of top k& documents in category ¢;

@ Retrieve documents using the expanded query q’

By f(wi, q)log p(w;|d)

211:1 flwi,q)
(1-8) 3%, f(ei,q)logp(eild)
2221 f(Ci7 Q)

logp(q'|d) =

+
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Experiment

Precision Recall Curves

T T T T
L —— Regression i
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o
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Recall

o Probabilistic approach > Language Model & Okapi




Experimental Design
Base |m Appr s

Experiment Experimental Results

Average Precision

Using Category No Category
Reg. Prob. ICF CQE | Okapi LM
Avg. Prec. 045 0.48 0.38 0.42 041 041

Prec @ 5 doc 0.55 0.56 0.40 0.50 0.47 0.50
Prec @ 10 doc 048 0.52 040 048 045 0.48
Prec @ 20 doc 0.46 0.46 0.39 0.42 0.39 0.38
Prec @ 100 doc || 0.21 0.21 0.19 0.19 0.20 0.20

@ Reg. and Prob. > Okapi and LM
- Category information is useful

o ICF and CQE < Okapi and LM
- Need to exploit category information wisely
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Retrieval Precision for Individual Queries

I L angauge Model
[ Inverse Category Frequency
0.9 [ Category-based Query Expansion
I Probabilistic
0.8 B
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e
o
% 05(-
3
g
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Query ID

@ Over 16 queries, probabilistic approach > langauge model

@ Over 5 queries, probabilistic approach < langauge model
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Summary

Summary

@ Proposed two algorithms for learning term weights using
category information

e A regression approach
o A probabilistic approach
o Empirical studies with the ImageCLEF dataset verify the
effectiveness of the proposed algorithms
o Future work

o Improve learning efficiency for large numbers of documents
and large-sized vocabularies
e Extend to image retrieval for annotated images
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