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Structured Prediction Problems

◮ Supervised learning: learn a function f : X → Y from
examples {(xi, yi)}

n
i=1

◮ Binary classification: Y = {−1, +1}

◮ Multi-class classification: Y = {1, 2, . . . , k}

◮ Structured prediction:

◮ Y is a very large set
◮ Each member of Y has internal structure



Examples of Structured Prediction Problems

◮ Speech recognition: mapping acoustic inputs to sentences

◮ Computer vision: e.g., finding a segmentation of an image

◮ Computational biology: mapping a DNA sequence to an
underlying segmentation

◮ Natural language parsing: mapping strings to parse trees

◮ Machine translation: mapping strings in one language to
strings in another language



Syntactic Structures
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◮ Natural language parsing: learning to map sentences to
underlying parse trees



Syntactic Structures
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Canadian Utilities had 1988 revenue of C$ 1.16 billion, mainly

from its natural gas and electric utility businesses in Alberta,

where the company serves about 800,000 customers.



Structured Prediction Models for Parsing

◮ Conditional random fields (CRFs), and other discriminative
models, are a powerful alternative to HMMs

◮ A key strength: flexible representations

◮ Can we generalize CRF-style models to parsing?

Challenges:

1. Choice of model structure/parameterization
2. Inference
3. Parameter estimation
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Context-Free Grammars (CFGs) for Language

◮ Basic elements in CFGs are rules. A simple CFG:

S -> NP VP A sentence is formed by a noun-phrase

followed by a verb-phrase

NP -> John A noun-phrase can be the string “John”

NP -> Mary A noun-phrase can be the string “Mary”

VP -> slept A verb-phrase can be the string “slept”

VP -> saw NP A VP can be “saw” followed by a noun-phrase

◮ A parse tree:
S

NP

John

VP

saw NP

Mary



Motivation for Parsing: Grammatical Relations

◮ A sentence:

John saw Mary in Helsinki

Grammatical relations within the sentence:

John is the subject of saw

Mary is the object of saw

in Helsinki is a (locative) modifier to saw

◮ Useful in many NLP applications: machine translation,
information extraction, etc.



Syntactic Structures and Grammatical Relations
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⇒ John is the subject of saw



Syntactic Structures and Grammatical Relations
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Syntactic Structures and Grammatical Relations
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⇒ In Helsinki is a prepositional-phrase (PP) modifier to saw



Probabilistic Context-Free Grammars (PCFGs)
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P (Tree) = P (S -> NP VP | S)× P (NP -> John | NP)×

P (VP -> saw NP | VP)× P (NP -> Mary | NP)
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Models: Key Points

1. Probabilistic/weighted grammars in machine learning

2. Tree adjoining grammars as an alternative to context-free
grammars

3. CRF-style models applied to learning weighted grammars



Conditional Random Fields

(Lafferty, McCallum, and Pereira, 2001)

◮ Goal: learn a function from x to y where

◮ x = x1x2 . . . xn is an input sequence
(e.g., a sequence of words)

◮ y = y1y2 . . . yn is an output sequence
(e.g., a sequence of underlying states)



The Building Blocks for CRFs: Feature Vectors

y = N V D N P N

x = Mary eats the cake with almonds

◮ f(x, i, yi−1, yi) is a feature vector representing the transition
yi−1 → yi at position i in the sentence

◮ e.g., i = 4, yi−1 = D, yi = N



Conditional Random Fields

◮ Model form:

y∗ = arg max
y

n∑

i=1

w · f(x, i, yi−1, yi)

◮ f(x, i, yi−1, yi) is a feature vector, w is a parameter vector

◮ w · f(x, i, yi−1, yi) is a measure of the plausibility/probability
of state yi−1 being followed by state yi at position i in the
sentence x

◮ Can find y∗ using the Viterbi algorithm



Generalizing CRFs to Parsing
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◮ One option: methods based on context-free grammars

◮ An alternative: Tree Adjoining Grammars (Joshi, 1985)



A TAG-Style Formalism

(Carreras, C, and Koo, 2008)

◮ In Tree Adjoining Grammar (TAG, Joshi, 1985) the grammar is
defined by a set of elementary trees.

◮ Our elementary trees are Spines (See also Shen and Joshi, 2005):
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A Combination Operation: Sister Adjunction

Sister adjunctions are used to combine spines to form trees.
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An adjunction operation attaches:

◮ A modifier spine

◮ To some position of a head spine
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◮ A modifier spine
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The Decomposition into Spines and Adjunctions
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Advantages of TAG
◮ Lexical entries naturally capture constraints associated with

lexical items S

VP

V

saw

◮ Probabilities/costs can be associated with combination
operations:
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The Contrast with Context-free Grammars

◮ In TAG, probabilities/costs are associated with combination
operations:
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◮ In CFGs, probabilities/costs are associated with rules:

S -> NP VP

VP -> saw NP

...



Features on Adjunctions
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◮ Feature vectors f(x, h, m, σh, σm, POS) where

◮ x is the sentence
◮ h = 3 (index of head word), m = 5 (index of modifier word)
◮ σh and σm are the head and modifier spines
◮ POS is the position being adjoined into (e.g., VP)
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Features on Adjunctions
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A TAG-Based Model

◮ Goal: map an input sentence x to a parse tree y

◮ Model form:

y∗ = arg max
y

∑

r∈y

w · f(x, r)

where each r is a tuple 〈h, m, σh, σm, POS〉 representing a
combination of two spines in y

◮ Compare to the model form for CRFs:

y∗ = arg max
y

n∑

i=1

w · f(x, i, yi−1, yi)



Experiments

◮ Inference: coarse-to-fine dynamic programming

◮ Training: averaged perceptron algorithm

◮ Data: Penn Wall Street Journal treebank

◮ Evaluation metric: precision, recall, and F1 score in recovering
constituents in parse trees

◮ Comparison to PCFG-based models



Probabilistic Context-Free Grammars (PCFGs)
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PCFGs with Parent Annotations

(Johnson, 1999)
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P (Tree) = P (S -> NP-S VP-S | S)×

P (NP-S -> John | NP-S)×

. . .



Lexicalized PCFGs
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P (Tree) = P (S-saw -> NP-John VP-saw | S-saw)×

P (NP-John -> John | NP-John)×

. . .



PCFGs with Latent Variables

(e.g., Petrov and Klein, 2007)

S-56

NP-43

John

VP-21

saw NP-49

Mary

◮ Each non-terminals (e.g., S) is split into a number of new
non-terminals (e.g., S-1, S-2, . . ., S-128)

◮ Latent annotations learned using EM



A Comparison to PCFGs

Parser F1 Error

Parent annotations (Johnson, 1999) 20.4%
Lexicalized PCFGs (Collins, 1999) 11.8%

Latent variables, EM (Petrov & Klein 2007) 9.9%
The TAG-based model 8.9%
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An Application: Translation

In wenigen Tagen finden Parlamentswahlen in Slowenien statt

⇓

In a few days, elections will take place in Slovenia

◮ Statistical machine translation: systems which learn from a
corpus of example translations

◮ Possible approaches:

◮ Learn a direct mapping from German to English
◮ Learn a mapping where syntactic structures are used as

latent/hidden structure



Phrase-based Translation (Och et al., 1999)

◮ In phrase-based systems, a major component is a lexicon of
phrase pairs, learned from a corpus of example translations.
E.g., (In wenigen ⇔ In a few), (Tagen ⇔ days)

◮ Translation involves:

1. Segmenting the German into phrases, and choosing a
translation for each phrase

2. Choosing an ordering of the resulting English phrases

[In wenigen] [Tagen] [finden] [Parlamentswahlen] [in Slowenien] [statt]
[In a few] [days] [take] [elections] [in Slovenia] [place]
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Translation as Parsing

e.g., Marcu et al., (2006), Shen et al., (2008)

◮ Phrase entries are augmented to include target-language
syntax, e.g.,

In wenigen ⇔ PP
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Translation as Parsing

Step 1 Choose a segmentation of the German input, and
choosing a phrase entry for each German phrase
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Translation as Parsing

Step 2 Assemble the English parse tree fragments to form a
complete tree (some reordering allowed)
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Properties of Translation as Parsing

◮ The translation process can be implemented using modified
parsing algorithms

◮ Potential Advantages:

◮ Building an English parse tree gives a direct model of
grammaticality/fluency

◮ Reordering operations can be based on the parse-tree
structure
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Inference

◮ Goal: map an input sentence x to a parse tree y

◮ Model form:

y∗ = arg max
y

∑

r∈y

w · f(x, r)

where each r is a tuple 〈h, m, σh, σm, POS〉 representing a
combination of two spines in y

◮ How to compute y∗?



Inference: Key Points

◮ Dynamic programming algorithms can be applied to the TAG
grammars

◮ Exact inference is still very expensive

◮ A solution: coarse-to-fine dynamic programming
(e.g., (Charniak, 1997; Charniak and Johnson, 2005))

◮ Use a first-pass, simple, computationally-cheap model to
restrict the search space of the full model



Dependency Structures

liked today* John saw a movie that he

◮ Directed arcs represent dependencies between a head word

and a modifier word.

◮ Dependency parsing models of McDonald et al. (2005, 2006):

y∗ = arg max
y

∑

r∈y

w · f(x, r)

where each r is a tuple 〈h, m〉 representing a dependency from
modifier m to head h



Efficient Parsing Algorithms (Eisner 1997, 2000)

◮ Dependency parsing models of McDonald et al. (2005, 2006):

y∗ = arg max
y

∑

r∈y

w · f(x, r)

where each r is a tuple 〈h, m〉 representing a dependency from
modifier m to head h

◮ Most probable/lowest cost dependency structure can be found
in O(n3) time where n is the length of the sentence

◮ Similar to probabilistic context-free grammars, where parsing
time is O(n3G), with G being a grammar constant



TAG Parses and Dependency Structures
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◮ A dependency structure augmented with spines, and
attachment positions



Applying Eisner’s Algorithms to our Formalism

◮ The TAG model form:

y∗ = arg max
y

∑

r∈y

w · f(x, r)

where each r is a tuple 〈h, m, σh, σm, POS〉 representing a
combination of two spines in y

◮ Most probable/lowest cost dependency structure can be found
in O(Gn3) time where n is the length of the sentence, G is a
grammar constant

◮ The constant G is polynomial in the number of possible spines
for any word, and the maximum height of any spine



Coarse-to-fine Dynamic Programming

◮ Parsing time is at least O(n3G)
(for some of our models it is O(n4G))

◮ Grammar constant G is prohibitive
(can easily have G > 1000 or G > 10000)

◮ Coarse-to-fine solution: build a simple dependency model with
a much lower grammar constant G (e.g., G ≈ 60), and use

this to prune the search space of the full model



Three Simple Dependencies In Every Adjunction
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◮ Coarse-to-fine approach: we only allow the full TAG model to
consider dependencies that have high probability under a
(simple) dependency model

◮ The simple model estimates dependency probabilities in
O(n3G) time, where G ≈ 60 is the number of non-terminals
(i.e., VP, NP, S, etc.)



Effect of the Beam (Validation Data)

1st stage 2nd stage
α active cov. orac. speed F1 error

10−4 0.07 97.7 97.0 5:15 8.9
10−5 0.16 98.5 97.9 11:45 8.4
10−6 0.34 99.0 98.5 21:50 8.0

We can discard 99.6% of the possible adjunctions
and retain 98.5% of the correct syntactic constituents
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Conditional Random Fields

◮ Model form:

y∗ = arg max
y

n∑

i=1

w · f(x, i, yi−1, yi)

◮ f(x, i, yi−1, yi) is a feature vector, w is a parameter vector
◮ w · f(x, i, yi−1, yi) is a measure of the plausibility/probability

of state yi−1 being followed by state yi at position i in the
sentence x

◮ Can find y∗ using the Viterbi algorithm

◮ Next question: algorithms for training the parameter

vector w



Efficiency is a Key Problem

◮ Parsing and other NLP problems are often large-scale, with
> 1000 or > 10000 training examples. Discriminative
approaches for structured problems typically require repeated
inference over the training examples.

◮ “Online” algorithms (e.g., stochastic gradient descent, the
perceptron) are much more efficient than batch gradient
methods (e.g., conjugate gradient, L-BFGS).

◮ Two “online” algorithms I’ll describe:

◮ The (averaged) perceptron
◮ Exponentiated-gradient algorithms for CRFs



Parameter Estimation: the Structured Perceptron

(C, 2002)

◮ Set w = 0

◮ For t = 1 . . . T

◮ For each training example (x,y)

1. Compute z = arg maxz

∑
n

i=1
w · f(x, i, zi−1, zi)

2. If z 6= y

w ← w +

n∑

i=1

f(x, i, yi−1, yi)−

n∑

i=1

f(x, i, zi−1, zi)

◮ Return w



Parameter Estimation: Averaging

(Freund and Schapire, 1998)

◮ Set w = 0, wa = 0

◮ For t = 1 . . . T

◮ For each training example (x,y)

1. Compute z = arg maxz

∑
n

i=1
w · f(x, i, zi−1, zi)

2. If z 6= y

w ← w +

n∑

i=1

f(x, i, yi−1, yi)−

n∑

i=1

f(x, i, zi−1, zi)

3. wa = wa + w

◮ Return wa/NT , where N is the number of training examples



Properties of the Perceptron

◮ If the data is separable, it will converge to parameter values
with 0 errors

◮ Number of errors before convergence is related to a definition
of margin. Can also relate margin to generalization properties

◮ In practice:

1. Averaging improves performance a lot

2. Typically reaches a good solution after only a few (say 5)
iterations over the training set

3. Often performs nearly as well as CRFs, or max-margin
Markov networks

4. Returns relatively sparse solutions, as each update only
involves two state sequences (y and z), and T is small



Averaged Perceptron Convergence

Iteration Accuracy

1 90.79
2 91.20
3 91.32
4 91.47
5 91.58
6 91.78
7 91.76
8 91.82
9 91.88
10 91.91
11 91.92
12 91.96
13 91.97

◮ Results on validation set for treebank parsing



Regularized Log-Likelihood for Training CRFs

◮ Define

f(x,y) =

n∑

i=1

f(x, i, yi−1, yi)

◮ Define

P (y | x;w) =
exp{w · f(x,y)}

Z(x;w)

◮ Given training examples {x(k),y(k)}Nk=1, minimize

L(w) = −
∑

k

log P (y(k) | x(k);w) +
1

2
||w||2



The Dual

◮ Dual variables: αk,y where k ranges over all training examples,
and y ranges over all state sequences for the k’th training
example

◮ Define w(α) =
∑

k f(x(k),y(k))−
∑

k

∑
y αk,yf(x

(k),y)

◮ Dual objective: minimize

Q(α) =
∑

k

∑

y

αk,y log αk,y +
1

2
||w(α)||2

under the constraints 0 ≤ αk,y ≤ 1,
∑

y αk,y = 1

◮ Duality: w∗ = w(α∗)



Dual Coordinate Descent

◮ Basic idea: pick one training example at a time, and update
the dual variables on that one training example

◮ Has “online” flavour, in that the algorithm updates
parameters after single training examples

◮ A nice property: can easily measure impact on the dual
objective of any updates, and thereby choose learning rate



An Exponentiated Gradient (EG) Algorithm

(C, Globerson, Koo, Carreras, Bartlett, 2008)

◮ Dual objective: Q(α) =
∑

k

∑
y αk,y log αk,y + 1

2
||w(α)||2

◮ Initialization: choose initial αk,y values (must be non-zero)

◮ Choose learning rate η > 0

◮ For t = 1 . . . T

1. Choose a training example k uniformly at random
2. Update dual variables on k’th example:

αk,y ←
αk,y exp{−η∇k,y}∑
y αk,y exp{−η∇k,y}

where ∇k,y = ∂
∂αk,y

Q(α)



Properties of the EG Algorithm

(C, Globerson, Koo, Carreras, and Bartlett, 2008)

◮ To get within ǫ of the optimal dual value, need O(log 1/ǫ)
updates. Online updates have faster convergence than batch
methods, both in theory and practice.

◮ In structured problems, the algorithm can be implemented
compactly/efficiently, using representation

αk,y =
exp{

∑n

i=1 θk,i,yi−1,yi
}

Z

where θk,i,yi−1,yi
∈ R are alternative dual variables.

◮ Main cost in the algorithm is then the forward-backward

algorithm.



Comparison to L-BFGS on a Parsing Problem

(Objective Value)

◮ Graph shows results for regularizer constant C = 10; results
for other regularizer constants are similar



Comparison to L-BFGS on a Parsing Problem

(Accuracy)

◮ Graph shows results for EG with regularizer constant C = 10,
and L-BFGS for a range of regularizer constants



Conclusions

◮ Models:

◮ Weighted grammars (like graphical models) offer useful
generalizations of HMMs

◮ Lexicalized grammars (e.g., TAGs, dependency grammars)
lead to alternative parameterizations to PCFGs

◮ Inference: coarse-to-fine dynamic programming can be very
effective

◮ Parameter estimation:

◮ Averaged perceptron, EG algorithms are efficient, and are
widely applicable to structured prediction problems



Second-Order Features with Siblings
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◮ Can add sensitivity to sibling dependencies, and still retain
O(n3) time algorithms



Second-Order Features with Grandchildren

v
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◮ Can add sensitivity to grandparent dependencies, with O(n4)
time algorithms



Regular Adjunctions

We also consider a regular adjunction operation.

It adds one level to the syntactic constituent it attaches to.
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