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Semi-supervised Clustering

Grouping together of similar objects given some
knowledge about the cluster structure

Brian Kulis, University of Texas at Austin – p.2/30



Semi-supervised Clustering

Grouping together of similar objects given some
knowledge about the cluster structure

Brian Kulis, University of Texas at Austin – p.3/30



Semi-supervised Clustering

Grouping together of similar objects given some
knowledge about the cluster structure

Brian Kulis, University of Texas at Austin – p.4/30



Semi-supervised Clustering

HMRF_KMeans: framework for semi-supervised
clustering based on Hidden Markov Random Fields
[Basu04]
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Two Circles

Some data is not linearly separable

Algorithms such as HMRF_KMeans cannot recover true
clusters
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Graph-Based Data

Data may also be in form of graph
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Graph-Based Data

Vector-based algorithms are inappropriate

Example goal: minimizing the normalized cut [Shi00]
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Graph-Based Data

Spectral Learning algorithm [Kam03] for this kind of data

Yeast gene interaction network
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Main Contributions

Theoretical equivalence between weighted kernelk-means and graph clustering

Unifies vector-based and graph-based semi-supervised
clustering using a kernel approach

Implication: One algorithm for semi-supervised
clustering of graph-based and vector-based data
HMRF_KMeans, Spectral Learning and several other
graph clustering objectives are special cases

Empirical results validate superior performance on
real-life data sets
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Weighted Kernel k-means [Dhi04]

Seek k-way partitioning f�gk=1 that minimizes:

D(f�gk=1) = kX=1 Xxi2� ik�(xi)�mk2;
where m = Pxi2� i�(xi)P

xi2� i

If all weights i are set to 1 and � is the identity, reduces
to standard k-means

Algorithm is kernelizable and is analogous to standardk-means

Any PSD matrix K can be interpreted as a kernel matrix
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Graph Clustering

Many graph clustering objectives are special cases of
the weighted kernel k-means objective function [Dhi04]

Objective Node Weights Kernel Matrix

Ratio Cut 1 8 nodes K = �I � L
Normalized Cut Deg. of node K = �D�1 +D�1AD�1

A: graph affinity matrixD: diagonal degree matrixL: Laplacian matrix
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HMRF_KMeans Clustering

Framework for semi-supervised clustering based on
Hidden Markov Random Fields [Basu04]

HMRF_KMeans Objective:kX=1 Xxi2� kxi �mk2 � X
xi;xj2M;li=lj wijj�lij + X

xi;xj2C;li=lj wijj�lij :

M set of must-link pairs, C set of cannot-link pairs, li is
the cluster label for xi
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HMRF_KMeans Clustering

Framework for semi-supervised clustering based on
Hidden Markov Random Fields [Basu04]

HMRF_KMeans Objective:kX=1 Xxi2� kxi �mk2� X
xi;xj2M;li=lj wijj�lij + X

xi;xj2C;li=lj wijj�lij :

M set of must-link pairs, C set of cannot-link pairs, li is
the cluster label for xiK = S +W , Wij = wij if (i; j) 2M, �wij if (i; j) 2 C
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Semi-supervised Graph Clustering

Semi-Supervised Normalized Cut

3 terms, as in HMRF objectivekX=1 links(V;V n V)

degree(V) � X
xi;xj2M;li=lj wij

deg(Vli)+ X
xi;xj2C;li=lj wij

deg(Vli) :
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Semi-supervised Graph Clustering

Semi-Supervised Normalized Cut

3 terms, as in HMRF objectivekX=1 links(V;V n V)

degree(V) � X
xi;xj2M;li=lj wij

deg(Vli)+ X
xi;xj2C;li=lj wij

deg(Vli) :

Can generalize to ratio cut and other graph clustering
objectives

Spectral Learning [Kam03] can be viewed as spectral
relaxation to semi-supervised ratio cut
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Algorithm

Input: Similarity matrix S, constraint matrix W, diagonal
node weight matrix �

For SS-NormCut, S = A; for SS-RatioCut, S = A�D

For SS-NormCut, � = D; for SS-RatioCut and
HMRF_KMeans, � = I

Form K = ��1(S +W )��1 + ���1
Get initial clusters using the constraints

Run weighted kernel k-means (with weights from �) onK using the initial clustering

Return the resulting clusters
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Experimental Methodology

Choose data sets with pre-existing labels

Clustering done on entire data set

Constraints chosen randomly from points in the training
set

Clustering accuracy computed using only the test set
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Experimental Methodology

Plotted learning curves with averages of 10 runs of
2-fold cross validation

x-axis corresponds to increasing number of constraints

y-axis corresponds to Normalized Mutual Information
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Handwritten Digits Data

Subset of digits 3,8,9 from Pendigits (317 points in 16-D
space)
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Yeast Gene Network Data

Interaction network for 216 yeast genes, labeled by
KEGG functional pathway labels
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Conclusion

Introduced a framework that unifies graph-based and
vector-based semi-supervised clustering

Captures a number of semi-supervised clustering
objectives, including HMRF_KMeans, Spectral Learning
and new semi-supervised graph clustering objectives

Kernel-based approach able to obtain better results on
real-life data sets

Brian Kulis, University of Texas at Austin – p.29/30



References

Basu03 Basu, S., Bilenko, M., and Mooney, R. A Probabilistic
Framework for Semi-supervised Clustering. KDD, 2004.

Dhi04 Dhillon, I., Guan, Y., and Kulis, B. A Unified View of
Kernel k-means, Spectral Clustering and Graph
Partitioning. TR-04-25, UT Austin, 2004.

Kam03 Kamvar, S., Klein, D., and Manning, C. Spectral
Learning. IJCAI, 2003.

Shi00 Shi, J., and Malik, J. Normalized Cuts and Image
Segmentation. IEEE PAMI, 2000.

Brian Kulis, University of Texas at Austin – p.30/30


	Semi-supervised Clustering
	Semi-supervised Clustering
	Semi-supervised Clustering
	Semi-supervised Clustering
	Two Circles
	Graph-Based Data
	Graph-Based Data
	Graph-Based Data
	Main Contributions
	Main Contributions
	Main Contributions
	Main Contributions
	Main Contributions
	Weighted Kernel k-means [Dhi04]
	Graph Clustering
	HMRF_KMeans Clustering
	HMRF_KMeans Clustering
	HMRF_KMeans Clustering
	Semi-supervised Graph Clustering
	Semi-supervised Graph Clustering
	Semi-supervised Graph Clustering
	Semi-supervised Graph Clustering
	Algorithm
	Experimental Methodology
	Experimental Methodology
	Handwritten Digits Data
	Yeast Gene Network Data
	Conclusion
	References

