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Motivation: Nonlinear system identification using
Volterra series

Characterisation of a nonlinear system y(t) = T[x(t)] by a series
expansion y(t) =

∑
n Hn[x(t)] (Volterra, 1887):

y(t) = h(0)+
∫

R
h(1)(τ1)x(t − τ1) dτ1

+
∫

R2
h(2)(τ1, τ2)x(t − τ1)x(t − τ2) dτ1dτ2

+
∫

R3
h(3)(τ1, τ2, τ3)x(t − τ1)x(t − τ2)x(t − τ3) dτ1dτ2dτ2

+ · · ·

Discretised form for x = (x1, . . . , xm)> ∈ Rm

Hn[x] =
∑m

i1=1
· · ·

∑m

in=1
h(n)

i1...in
xi1 . . . xin.



Polynomial regression and Volterra systems

Volterra expansions can be efficiently estimated by a regression
in polynomial kernel functions (Franz & Schölkopf, 2006)

kihp(x, x′) = (1 + x>x′)p

⇒ GP framework is applicable for the estimation of Volterra
systems.

Problems:

Polynomial covariance implies strong correlation of distant
inputs. In real-world problems, the reverse situation is more
common.

Typically, polynomial regression shows inferior
performance than localized covariance functions.

⇒ Independent choice of covariance and basis



Decoupling of basis and covariance

Basic idea: approximate a desired covariance function
kGP(xi , xj) on a finite set S = {x1, . . . , xp} of input points.

Weight-space view of a GP: k(xi , xj) = φ(xi)>Σwφ(xj).
⇒ Choose basis φ(x) and prior Σw such that

kGP(xi , xj) = φ(xi)>Σwφ(xj) ∀xi , xj ∈ S.

Basis: Kernel PCA map φ(x) = K− 1
2 (k(x, x1), . . . , k(x, xn))>,

solve system of linear equations in Σw.

⇒
Arbitrary covariances can be approximated.

Performance of polynomial regression can be significantly
improved.


