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Outline

Covariance functions encode structure. You can learn about them by
e sampling,

e optimizing the marginal likelihood.

GP’s with various covariance functions are equivalent to many well known
models, large neural networks, splines, relevance vector machines...

e infinitely many Gaussian bumps regression

e Rational Quadratic and Matérn

Quick two-page recap of GP regression

Approximate inference for Gaussian process classification: Replace the
non-Gaussian intractable posterior by a Gaussian. Expectation Propagation.
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From random functions to covariance functions

Consider the class of functions (sums of squared exponentials):

T T N |
flz) = nlgr;ﬂ%jmexp( (z —i/n)%), where ; ~N(0,1), Vi

/Oov(u) exp(—(z — u)?)du, where ~y(u) ~ N(0,1), Vu.

The mean function is:
uz) = Elf() = / exp(—(z — u)?) / p(y)dydu = 0,

and the covariance function:
Ef@) @) = [exp (- (- w)? - (@'~ w)?)du
= /exp (* 2(u — x;x’)z + (@ +2x’)2 —z? - :c'2))du X exp (— %)

Thus, the squared exponential covariance function is equivalent to regression
using infinitely many Gaussian shaped basis functions placed everywhere, not
just at your training points!
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Why it is dangerous to use only finitely many basis
functions?
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Rational quadratic covariance function

The rational quadratic (RQ) covariance function:
r? \ o
fnal) = (14 50)
rQ(r) + 5

with «, £ > 0 can be seen as a scale mizture (an infinite sum) of squared
exponential (SE) covariance functions with different characteristic length-scales.
Using 7 = (=2 and p(7|a, B) o< 7% L exp(—at/B):

Frolr) = /p<7|a,ﬁ>kSE<r|T>dr

x /T“_lexp(— %) exp(— %)dT x (1—&—2;7)_a.
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Rational quadratic covariance function II
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The limit o — oo of the RQ covariance function is the SE.
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Matérn covariance functions

Stationary covariance functions can be based on the Matérn form:

! \/?|x—x'\]uKl,<mx—x’|),

k(X,X’) =S W 7‘

where K, is the modified Bessel function of second kind of order v, and & is the
characteristic length scale.

Sample functions from Matérn forms are |v — 1] times differentiable. Thus, the
hyperparameter v can control the degree of smoothness
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Matérn covariance functions I

Univariate Matérn covariance function with unit characteristic length scale and
unit variance:
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Matérn covariance functions I

It is possible that the most interesting cases for machine learning are v = 3/2
and v = 5/2, for which

ky—32(r) = (1"‘9) ex

(5 ) e ()

»(°7)

)

14

kv:5/2 (T) = Y 362

)

Other special cases:

e v =1/2: Laplacian covariance function, sample functions: stationary
Browninan motion

e v — oo: Gaussian covariance function with smooth (infinitely differentiable)
sample functions
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A Comparison

w
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Left, SE covariance function, log marginal likelihood —15.6, and right Matérn
covariance function with v = 3/2, marginal likelihood —18.0.
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GP regression recap

We use a Gaussian process prior for the latent function:
f|X,0 ~ N(0, K)

The likelihood is a factorized Gaussian

m

it ~ [IN@lfi o)
=1

The posterior is Gaussian

_ (X, 0) p(ylf)
p(D|6)

The latent value at the test point, f(x*) is Gaussian

p(f1D.0,x.) = / p(f.If. X, 0,%.) df,

and the predictive class probability is Gaussian
p0D.0.x.) = [l £p(1ID.6.x.)d1..
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Prior and posterior

output, f(x)
OS
output, f(x)

0
input, x input, x

Predictive distribution:

Pyl x,y) ~ N(k(z*, %) T[K + opoie ]y,
]{,‘(.’E*, l’*) + 01210ise - k(x*’ X>T[K + Uioiseﬂ_lk(‘%’*ﬂ X))
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The marginal likelihood

To chose between models My, Mo, ..., compare the posterior for the models
p(Y|X7 Ml)p(Ml)
p(M;|D) = ————— .
p(D)

Log marginal likelihood:
1+ . 1 n
logp(ylx, Mi) = —gy K™y — ;log|K| — 5 log(27)

is the combination of a data fit term and complexity penalty. Occam’s Razor is
automatic.
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Binary Gaussian Process Classification
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The class probability is related to the latent function through:
ply =1f(x) = 7m(x) = (f(x)).

Observations are independent given f, so the likelihood is

p(ylf) HP wilfo) = [[2@fo).
i=1
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Likelihood functions

The logistic (1 + exp(—y;f;))~! and probit ®(y;f;) and their derivatives:

log likelihood, log p(yi|fi)
i

=
T

— log likelihood
---- 1st derivative
2nd derivative

-2 . 0 2
latent times target, zizyifi
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log likelihood, log p(y,[f)
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Exact expressions

We use a Gaussian process prior for the latent function:
f1X,0 ~ N(0, K)

The posterior becomes:

_ X 9)p(ylf) _ N(flO, K)ﬁ@(wﬁ;)

p06) poe) L

which is non-Gaussian.
The latent value at the test point, f(x*) is

p(AID.0x) = [p(FI8.X 00000001,
and the predictive class probability becomes
p0D.0x) = [pla|F)p(1 D6, %)

both of which are intractable to compute.
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Gaussian Approximation to the Posterior

We approximate the non-Gaussian posterior by a Gaussian:
P(E[D,0) =~ q(£[D,0) = N(m, A)
then q(f«|D,0,%x.) = N (fe|px, 02), where
e = k] K™lm

0? = k(x,,x,)—k] (K™' — K1AK 1)k,.

*

Using this approximation:

q(y. =1/D,0,x,) = /q)(f*)N(f*w*’a’%)df* N @(%>
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What Gaussian?

Some suggestions:
e local expansion: Laplace’s method

e optimize a variational lower bound (using Jensen’s ineqality):

p(y[f)p(f)

q(f) Ja®)df

log p(y|X) = log / p(yIOp(E)dE > / log (

e the Expectation Propagation (EP) algorithm
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Expectation Propagation
Posterior:

p(f1X,y) = —p(1X) [ [ p(uil f),
1=1

where the normalizing term is the marginal likelihood

7 = p51X) = [ ot [ ol

Exact likelihood:
p(yi|fi) = ‘I’(fiyi)

which makes inference intractable. In EP we use a local likelihood approzimation
pyilfi) = ti(filZi i, 67) & ZN(filfui, 67),

where the site parameters are Z;, fui and G2, such that:

Hti(fi|2i7ﬂi7&i2) = N(i,%) HZ
1=1 i
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Expectation Propagation II

We approximate the posterior by:

1

fIX,y) 2
q(f|X,y) Zon?

1) [[ti (il Zis i 57) = N (D),
=1

with g = X7 'z, and ¥ = (K~ 1427171,
How do we choose the site parameters?

Key idea: iteratively update each site in turn, based on approximation so far.

The approximate posterior for f; contains three kinds of terms:
@ the prior p(f|X)
® the approximate likelihoods ¢; for all cases j # 1
® the exact likelihood for case i, p(y;|f;)-
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The Cavity distribution

The cavity distribution
a-it) o [ o0 [T 6,012 5,50
J#i
can be found by “removing” one term from the posterior:
a(filX,y) = N(filpi, 0})
to get:

q—i(fi) £ N(filu_z-, Uii),
2

where p_; = U_i(ai_Q,ui—@_Qﬂi), and o2, = (0;°—5;)"".

Now, find ¢(f;) which matches the desired:
Q(fi) & ZiN(fui,67) ~ q_i(fi)p(il f:)-

by matching moments.
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Expectation Propagation III

The desired moments can be computed in closed form:

O(z)V1+ 02,
& = 02-—M(2. N(2)
- (1 +O’Ei)q>(zi) v (I)(Zi)

Zi = ®(z), i = p—i+

Yilb—i

\/1—&-031—.

) ,  where 2z, =

These moments are achieved by setting the site parameters to:

fii = 6767 —o iug), &7 = (6;°—02})7,

Zi = Z\2mV o2+ 67 exp ($(u—i — )%/ (02, + 62)),
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The EP approximation

ah == likelihood 0.14
A cavity
0.8f ; —— posterior 0.12f
B approximation
i 0.1
>4 | o.08
0.4 / 1 0.06f
0.04f
0.2 ; ]
s 0.02
0 5 10 0
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Predictive distribution

The latent predictive mean:
Ey[felX,y,x] = KK 'p = KK (KT +57)7'87 g
=k (K+%)
and variance:
Volfol Xy %] = k(e %) =k (K +2) ke,

which can be plugged into the class probability equation:

Q(y* :1|D’9’X*) = /(I)(f*)/\/'(f*‘u*70'f)df* - q)(%

N~—
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Marginal Likelihood

The EP approximation for the marginal likelihood:

n

Zee = ay1X) = [ O []6(51Zs i o)t
=1
which evaluates to:
log(Zgp|0) = —flog|K+Z| ~T(K+i)*1p

Yilb—; 1 2 ~2 (p—i — fi;)
+Zlog<1> \/T%l)ﬁ-iZlOg(J,lﬁ-Uz)“er

which has a nice interpretation.

It is possible to analytically evaluate the derivatives of the estimated log
marginal likelihood w.r.t. the hyperparameters.
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Example

=0.6
I o Class 1
20.4r | o Class -1
—Laplace p(y|X)
0.21|---EP p(y|X)
0 —True p(y|X)
-8 -6 -4 -2 0 2 4
X
151 — Laplace p(f|X)
10- , ---EP p(f|X)

f(x)
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USPS Digits, 3s vs 5s
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USPS Digits, 3s vs 5s
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The Structure of the posterior
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Conclusions

Covariance functions for Gaussian processes
e encodes useful information about the functions

e can be learnt from the data

Whereas inference for regression with Gaussian noise can be done in closed form
e non-Gaussian likelihoods (as eg in classification) cannot

e (many) good approximations exist

For the details: Rasmussen and Williams ‘Gaussian Processes for Machine
Learning’, the MIT Press 2006.

For the (matlab) code www.GaussianProcess.org/gpml.
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