
Flexible and efficient
Gaussian process models

Ed Snelson (snelson@gatsby.ucl.ac.uk)

Gatsby Computational Neuroscience Unit, UCL

GPiP workshop, 12th June 2006

Work done with Zoubin Ghahramani

Overview

Several techniques to improve efficiency and/or flexibility of GPs:

1. A sparse Gaussian process approximation (SPGP/FITC) based

on a small set of M ‘pseudo-inputs’ (M � N). This reduces

computational complexity from O(N3) to O(M2N)

2. A gradient based learning procedure for finding the pseudo-inputs

and hyperparameters of the GP, in one joint optimization

3. Supervised dimensionality reduction for problems with large

numbers of input features1

4. Modeling input dependent noise1

1to appear, UAI 2006

1

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values f =
{fn}N

n=1, given corresponding inputs X = {xn}N
n=1

one sample function

x

f

prior

p(f |X) = N (0,KN)

KN

Covariance: Knn′ = K(xn,xn′ ;θ), hyperparameters θ

Knn′ = v exp

−1
2

D∑
d=1

(
x

(d)
n − x

(d)
n′

rd

)2


2

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values f =
{fn}N

n=1, given corresponding inputs X = {xn}N
n=1

f1

f2

f3 fN

N function values

x

f

prior

p(f |X) = N (0,KN)

KN

Covariance: Knn′ = K(xn,xn′ ;θ), hyperparameters θ

Knn′ = v exp

−1
2

D∑
d=1

(
x

(d)
n − x

(d)
n′

rd

)2


2

GP regression
Gaussian observation noise: yn = fn + εn, where εn ∼ N (0, σ2)

sample data

x

y
marginal likelihood

p(y|X) = N (0,KN + σ2I)

predictive

x

y

predictive distribution

p(y∗|x∗,X,y) = N (µ∗, σ2
∗)

µ∗ = K∗N(KN + σ2I)−1y
σ2
∗ = K∗∗ −K∗N(KN + σ2I)−1KN∗ + σ2

Problem: N3 computation
3

GP regression
Gaussian observation noise: yn = fn + εn, where εn ∼ N (0, σ2)

sample data

x

y
marginal likelihood

p(y|X) = N (0,KN + σ2I)

x∗

predictive

x

y

predictive distribution

p(y∗|x∗,X,y) = N (µ∗, σ2
∗)

µ∗ = K∗N(KN + σ2I)−1y
σ2
∗ = K∗∗ −K∗N(KN + σ2I)−1KN∗ + σ2

Problem: N3 computation
3

Two stage generative model

X̄

x

f
pseudo-input prior

p(f̄ |X̄) = N (0,KM)

1. Choose any set of M (pseudo-) inputs X̄

2. Draw corresponding function values f̄ from prior

4

Two stage generative model

X̄

x

f

3. Draw f conditioned on f̄

conditional

p(f |f̄) = N (µ,Σ)

µ = KNMK−1
M f̄

Σ = KN −KNMK−1
M KMN

Σ

• This two stage procedure defines exactly the same GP prior

• We have not gained anything yet, but it inspires a sparse

approximation ...

5

Factorized approximation

X̄

x

f

single point conditional

p(fn|f̄) = N (µn, λn)

µn = KnMK−1
M f̄

λn = Knn −KnMK−1
M KMn

Λ

Approximate: p(f |f̄) ≈
∏
n

p(fn|f̄) = N (µ,Λ) , Λ = diag(λ)

Minimum KL: min
qn

KL
[
p(f |f̄) ‖

∏
n

qn(fn)
]

6

Sparse pseudo-input Gaussian processes (SPGP)

Integrate out f̄ to obtain SPGP prior: p(f) =
∫

df̄
∏

n p(fn|f̄) p(f̄)

GP prior

N (0,KN) ≈
SPGP/FITC prior

p(f) = N (0,KNMK−1
M KMN + Λ)

≈ = +

• SPGP/FITC covariance inverted in O(M2N) ⇒ sparse

• SPGP = GP with non-stationary covariance parameterized by X̄

• Given data {X,y} with noise σ2, predictive mean and variance

can be computed in O(M) and O(M2) per test case respectively

7

How to find pseudo-inputs?

Pseudo-inputs are like extra hyperparameters: we jointly maximize

marginal likelihood w.r.t. (X̄,θ, σ2)

p(y|X, X̄,θ, σ2) = N
(
0, KNMK−1

M KMN + Λ + σ2I
)

Key advantages over many related sparse methods 1:

1. Pseudo-inputs not constrained to subset of data (‘active set’) =

improved accuracy and flexibility

2. Joint optimization avoids discontinuities that arise when active

set selection is interleaved with hyperparameter learning

1Tresp (2000), Smola & Bartlett (2001), Csató & Opper (2002), Seeger et al. (2003)

8

Local maxima and overfitting?

• Many local maxima, but can initialize pseudo-inputs on random

subset of data. Hyperparameter initialization more tricky

• Many parameters: MD + |θ|+ 1 instead of |θ|+ 1. Overfitting?

(D = input space dimension, M = no. of pseudo-inputs)

• Consider M = N and X̄ = X

– Here KMN = KM = KN, Λ = σ2I
⇒ SPGP collapses to full GP

• However interaction with hyperparameter learning can lead to

overfitting behaviour

• For full Bayesian treatment: sample pseudo-inputs and

hyperparameters from p(X̄,θ, σ2|X,y) instead of optimizing

9

1D demo

amplitudeamplitudeamplitude

x

y

X̄

amplitude lengthscale noise

Initialize adversarially: amplitude and lengthscale too big
noise too small
pseudo-inputs bunched up

10

1D demo

amplitudeamplitudeamplitude

x

y

X̄

amplitude lengthscale noise

Pseudo-inputs and hyperparameters optimized

10

Dimensionality reduction

• Optimizing pseudo-inputs becomes unfeasible for high dimensional

input spaces – MD + |θ|+ 1 sized optimization space

(D = input space dimension, M = no. of pseudo-inputs)

• M is a user contolled parameter that can be used to trade off

accuracy and computation – D is not

• We can extend the SPGP by learning a low dimensional projection

of the input space

• We learn a linear projection of the data points xnew
n = Pxn in a

supervised manner – contrast: PCA

11

Dimensionality reduction

Again this involves a modification to the covariance function1:

K(xn,xn′) = c exp
[
−1

2

(
P (xn − xn′)

)>
P (xn − xn′)

]
When combined with the SPGP, the pseudo-inputs now live in the

reduced dimensional (G) space:

K(xn, x̄m) = c exp
[
−1

2(Pxn − x̄m)>(Pxn − x̄m)
]

K(x̄m, x̄m′) = c exp
[
−1

2(x̄m − x̄m′)>(x̄m − x̄m′)
]

Training: we maximize marginal likelihood w.r.t. pseudo-inputs X̄,

the projection matrix P , the size c, and the noise σ2

1Vivarelli & Williams, 1999

12

Dimensionality reduction – selected results

Predictive Uncertainty in Environmental Modeling Competition1

Temp data set: D = 106, Ntrain = 7117, Nvalid = 3558, Ntest = 3560

Validation Time /s

Method NLPD MSE Train Test

SPGP 0.063 0.0714 4420 0.567

+DR 2 0.106(2) 0.0754(5) 180(10) 0.043(1)

+DR 5 0.071(8) 0.0711(7) 340(10) 0.061(1)

+DR 10 0.112(10) 0.0739(12) 610(20) 0.091(1)

+DR 20 0.181(5) 0.0805(7) 1190(50) 0.148(1)

+DR 30 0.191(6) 0.0818(7) 1740(50) 0.206(3)

+PCA 5 0.283(1) 0.1093(1) 200(10) 0.047(2)

1http://theoval.sys.uea.ac.uk/competition/

13

Modeling input dependent noise

standard GP

x

y

SPGP

X̄

x

y

Extra flexibility of SPGP allows some non-stationary effects to be

modeled, but in a somewhat limited way

14

A better solution

We make a modification to the covariance of the pseudo-inputs:

KM → KM + diag(h)

h is a (+ve) vector of uncertainties to ‘switch off’ pseudo-inputs

x

y

15

Modeling input dependent noise ... revisited

x

y

Uncertainties h are extra parameters to be learned by ML

They adjust to the local noise level, and the pseudo-inputs are not

forced left as before

16

Temp data set ... revisited

Validation Time /s

Method NLPD MSE Train Test

SPGP 0.063 0.0714 4420 0.567

+DR 5 0.071(8) 0.0711(7) 340(10) 0.061(1)

+HS,DR 5 0.077(5) 0.0728(3) 360(10) 0.062(3)

• It was suggested that the Temp data set is heteroscedastic

• However SPGP+HS did no better than SPGP

• We took a subset of the data (size 1000), and found an SPGP on

the subset significantly outperformed a full GP on the subset

• Indicates SPGP modeling the variable noise well

17

Limitations and possible extensions

• We have introduced a great deal of flexibility into the GP covariance

function

• Care needs to be taken to avoid overfitting these extra parameters

• We used CG or L-BFGS but many optimization schemes available:

– Optimize subsets of variables iteratively (chunking)

– Stochastic gradient descent

– hybrid — pick some points randomly, optimize others

– EM algorithm

• Extension to classification and other likelihood functions

18

Conclusions

• All the methods presented can be viewed as GPs with complex

parameterized covariance functions

• These developments allow GP methods to be applied to a wide

range of data sets

• We can handle a large number of data points, high dimensional

input spaces, with variable noise

• The desirable properties of the standard GP are retained –

sensible predictive error bars, and a principled determination of

hyperparameters

• Performance increases over other methods have been shown on

real data sets, including a winning competition entry

19

Relation of SPGP/FITC to PLV/DTC1

SPGP/FITC
Approximate conditional:

p(f |f̄) ≈
∏

n p(fn|f̄) = N (µ,Λ)
minimum KL fully factorized

approximation

Marginal likelihood:

N (0,KNMK−1
M KMN + Λ + σ2I)

marginal variances match full GP

everywhere

Pseudo-inputs:

not constrained to data – optimized by

gradient ascent on marginal likelihood,

together with hyperparameters

PLV/DTC
Approximate conditional:

p(f |f̄) ≈ N (µ,0)
uncertainty not taken into account –

deterministic approximation

Marginal likelihood:

N (0,KNMK−1
M KMN + σ2I)

marginal variances decay to σ2 away

from ‘active set’ points

Active set:

chosen as subset of data using greedy

info-gain criteria; active set selection and

hyperparameter learning interleaved

1Seeger et al. (2003)

20

PLV/DTC with pseudo-inputs

x

y

(a)

x

y

(c)

x

y

(b)

Predictive distributions for: (a) full GP, (b) gradient ascent on SPGP

likelihood, (c) gradient ascent on PLV likelihood.

Initial pseudo point positions — red crosses

Final pseudo point positions — blue crosses

21

Comparison to RBF networks

The idea of basis functions with movable centres (pseudo-inputs)

dates back to RBF networks:

f(x∗) =
∑
m

K(x∗, x̄m)αm

The SPGP mean predictor could be regarded as an RBF predictor

with a certain set of weights α:

µ∗ = K∗MQ−1KMN(Λ + σ2I)−1y

σ2
∗ = K∗∗ −K∗M(K−1

M −Q−1)KM∗ + σ2 ,

where Q = KM + KMN(Λ + σ2I)−1KNM

However the SPGP has sensible predictive variances, and a principled

ML method for choosing the pseudo-inputs and hyperparameters

22

