Eigenfunctions and Approximation Methods

Chris Williams

School of Informatics, University of Edinburgh

Bletchley Park, June 2006

Eigenfunctions

$$
k(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{N_{F}} \lambda_{i} \phi_{i}(\mathbf{x}) \phi_{i}(\mathbf{y})
$$

eigenfunctions obey

$$
\int k(\mathbf{x}, \mathbf{y}) p(\mathbf{x}) \phi_{i}(\mathbf{x}) d \mathbf{x}=\lambda_{i} \phi_{i}(\mathbf{y})
$$

Note that

- Eigenfunctions are orthogonal wrt $p(\mathbf{x})$

$$
\int \phi_{i}(\mathbf{x}) p(\mathbf{x}) \phi_{j}(\mathbf{x})=\delta_{i j}
$$

- The eigenvalues are the same for the symmetric kernel

$$
\tilde{k}(\mathbf{x}, \mathbf{y})=p^{1 / 2}(\mathbf{x}) k(\mathbf{x}, \mathbf{y}) p^{1 / 2}(\mathbf{y})
$$

Relationship to the Gram matrix

- Approximate the eigenproblem

$$
\int k(\mathbf{x}, \mathbf{y}) p(\mathbf{x}) \phi_{i}(\mathbf{x}) d \mathbf{x} \simeq \frac{1}{n} \sum_{k=1}^{n} k\left(\mathbf{x}_{k}, \mathbf{y}\right) \phi_{i}\left(\mathbf{x}_{k}\right)
$$

- Plug in $\mathbf{y}=\mathbf{x}_{k}, k=1, \ldots, n$ to obtain the matrix eigenproblem $(n \times n)$.
- $\lambda_{1}^{\text {mat }}, \lambda_{2}^{\text {mat }}, \ldots, \lambda_{n}^{m a t}$ is the spectrum of the matrix. In limit $n \rightarrow \infty$ we have

$$
\frac{1}{n} \lambda_{i}^{m a t} \rightarrow \lambda_{i}
$$

- Nyström's method for approximating $\phi_{i}(\mathbf{y})$

$$
\phi_{i}(\mathbf{y})=\frac{1}{n \lambda_{i}} \sum_{k=1}^{n} k\left(\mathbf{x}_{k}, \mathbf{y}\right) \phi_{i}\left(\mathbf{x}_{k}\right)
$$

What is really going on in GPR?

$$
\begin{gathered}
f(x)=\sum_{i} \eta_{i} \phi_{i}(x) \\
t_{i}=f\left(x_{i}\right)+\epsilon_{i} \quad \epsilon_{i} \sim N\left(0, \sigma_{n}^{2}\right) \\
p\left(\eta_{i}\right) \sim N\left(0, \lambda_{i}\right)
\end{gathered}
$$

- Posterior mean

$$
\hat{\eta}_{i} \sim \frac{\lambda_{i}}{\lambda_{i}+\frac{\sigma_{n}^{2}}{n}} \eta_{i}
$$

- Ferrari-Trecate, Williams and Opper (1999)
- Require $\lambda_{i} \gg \sigma_{n}^{2} / n$ in order to find out about η_{i}
- All eigenfunctions are present, but can be "hidden"

Eigenfunctions depends on $p(\mathbf{x})$

Toy problem

- $p(x)$ is a mixture of Gaussians at ± 1.5, variance 0.05
- Kernel

$$
k(x, y)=\exp -(x-y)^{2} / 2 \ell^{2}
$$

- For $\ell=0.2$ eigenfunctions are

1st

2nd

5th

- For $\ell=0.4$ eigenfunctions

- Notice how large- λ eigenfunctions have most variation in areas of high density: c.f. curse of dimensionality

Eigenfunctions for stationary kernels

- For stationary covariance functions on \mathbb{R}^{D}, eigenfunctions are sinusoids (Fourier analysis)
- Matern covariance function

$$
\begin{gathered}
k_{\text {Matern }}(r)=\frac{2^{1-\nu}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{\ell}\right), \\
S(s) \propto\left(\frac{2 \nu}{\ell^{2}}+4 \pi^{2} s^{2}\right)^{-(\nu+D / 2)} \\
\nu \rightarrow \infty \text { gives SE kernel }
\end{gathered}
$$

- Smoother processes have faster decay of eigenvalues

Approximation Methods

- Fast approximate solution of the linear system
- Subset of Data
- Subset of Regressors
- Inducing Variables
- Projected Process Approximation
- FITC, PITC, BCM
- SPGP
- Empirical Comparison

Gaussian Process Regression

Dataset $\mathcal{D}=\left(\mathbf{x}_{i}, y_{i}\right)_{i=1}^{n}$, Gaussian likelihood $p\left(y_{i} \mid f_{i}\right) \sim N\left(0, \sigma^{2}\right)$

$$
\bar{f}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

where

$$
\begin{gathered}
\boldsymbol{\alpha}=\left(K+\sigma^{2} I\right)^{-1} \mathbf{y} \\
\operatorname{var}(\mathbf{x})=k(\mathbf{x}, \mathbf{x})-\mathbf{k}^{T}(\mathbf{x})\left(K+\sigma^{2} I\right)^{-1} \mathbf{k}(\mathbf{x})
\end{gathered}
$$

in time $O\left(n^{3}\right)$, with $\mathbf{k}(\mathbf{x})=\left(k\left(\mathbf{x}, \mathbf{x}_{1}\right), \ldots, \mathbf{k}\left(\mathbf{x}, \mathbf{x}_{n}\right)\right)^{T}$

Fast approximate solution of linear systems

- Iterative solution of $\left(K+\sigma_{n}^{2} I\right) \mathbf{v}=\mathbf{y}$, e.g. using Conjugate Gradients. Minimizing

$$
\frac{1}{2} \mathbf{v}^{T}\left(K+\sigma_{n}^{2} l\right) \mathbf{v}-\mathbf{y}^{T} \mathbf{v}
$$

This takes $O\left(k n^{2}\right)$ for k iterations.

- Fast approximate matrix-vector multiplication

$$
\sum_{i=1}^{n} k\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) v_{i}
$$

- k-d tree/ dual tree methods (best for short kernel lengthscales ?) (Gray, 2004; Shen, Ng and Seeger, 2006; De Freitas et al 2006)
- Improved Fast Gauss transform (Yang et al, 2005) (best for long kernel lengthscales ?)

Subset of Data

- Simply keep m datapoints, discard the rest: $O\left(m^{3}\right)$
- Can choose the subset randomly, or by a greedy selection criterion
- If we are prepared to do work for each test point, can select training inputs nearby to the test point. Stein (Ann. Stat., 2002) shows that a screening effect operates for some covariance functions

$$
\tilde{K}=K_{f u} K_{u u}^{-1} K_{u f}
$$

Nyström approximation to K

Subset of Regressors

- Silverman (1985) showed that the mean GP predictor can be obtained from the finite-dimensional model

$$
f\left(\mathbf{x}_{*}\right)=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{*}, \mathbf{x}_{i}\right)
$$

with a prior $\boldsymbol{\alpha} \sim \mathcal{N}\left(\mathbf{0}, K^{-1}\right)$

- A simple approximation to this model is to consider only a subset of regressors

$$
f_{\mathrm{SR}}\left(\mathbf{x}_{*}\right)=\sum_{i=1}^{m} \alpha_{i} k\left(\mathbf{x}_{*}, \mathbf{x}_{i}\right), \quad \text { with } \quad \boldsymbol{\alpha}_{u} \sim \mathcal{N}\left(\mathbf{0}, K_{u u}^{-1}\right)
$$

$$
\begin{aligned}
\bar{f}_{\mathrm{SR}}\left(\mathbf{x}_{*}\right) & =\mathbf{k}_{u}\left(\mathbf{x}_{*}\right)^{\top}\left(K_{u f} K_{f u}+\sigma_{n}^{2} K_{u u}\right)^{-1} K_{u f} \mathbf{y}, \\
\mathbb{V}\left[f_{\mathrm{SR}}\left(\mathbf{x}_{*}\right)\right] & =\sigma_{n}^{2} \mathbf{k}_{u}\left(\mathbf{x}_{*}\right)^{\top}\left(K_{u f} K_{f u}+\sigma_{n}^{2} K_{u u}\right)^{-1} \mathbf{k}_{u}\left(\mathbf{x}_{*}\right)
\end{aligned}
$$

- SoR corresponds to using a degenerate GP prior (finite rank)

Inducing Variables

Quiñonero-Candela and Rasmussen (JMLR, 2005)

$$
p\left(\mathbf{f}_{*} \mid \mathbf{y}\right)=\frac{1}{p(\mathbf{y})} \int p(\mathbf{y} \mid \mathbf{f}) p\left(\mathbf{f}, \mathbf{f}_{*}\right) d \mathbf{f}
$$

Now introduce inducing variables u

$$
p\left(\mathbf{f}, \mathbf{f}_{*}\right)=\int p\left(\mathbf{f}, \mathbf{f}_{*}, \mathbf{u}\right) d \mathbf{u}=\int p\left(\mathbf{f}, \mathbf{f}_{*} \mid \mathbf{u}\right) p(\mathbf{u}) d \mathbf{u}
$$

Approximation

$$
p\left(\mathbf{f}, \mathbf{f}_{*}\right) \simeq q\left(\mathbf{f}, \mathbf{f}_{*}\right) \stackrel{\operatorname{def}}{=} \int q(\mathbf{f} \mid \mathbf{u}) q\left(\mathbf{f}_{*} \mid \mathbf{u}\right) p(\mathbf{u}) d \mathbf{u}
$$

$q(\mathbf{f} \mid \mathbf{u})$ - training conditional
$q\left(\mathbf{f}_{*} \mid \mathbf{u}\right)$ - test conditional

Inducing variables can be:

- (sub)set of training points
- (sub)set of test points
- new x points

Projected Process Approximation—PP

(Csato \& Opper, 2002; Seeger, et al 2003; aka PLV, DTC)

- Inducing variables are subset of training points
- $q(\mathbf{y} \mid \mathbf{u})=\mathcal{N}\left(\mathbf{y} \mid K_{f u} K_{u u}^{-1} \mathbf{u}, \sigma_{n}^{2} I\right)$
- $K_{f u} K_{u u}^{-1} \mathbf{u}$ is mean prediction for \mathbf{f} given \mathbf{u}
- Predictive mean for PP is the same as SR , but variance is never smaller. SR is like PP but with deterministic $q\left(f_{*} \mid \mathbf{u}\right)$

FITC, PITC and BCM

See Quiñonero-Candela and Rasmussen (2005) for overview

- Under PP, $q(\mathbf{f} \mid \mathbf{u})=\mathcal{N}\left(\mathbf{y} \mid K_{f u} K_{u u}^{-1} \mathbf{u}, 0\right)$
- Instead FITC (Snelson and Ghahramani, 2005) uses individual predictive variances $\operatorname{diag}\left[K_{f f}-K_{f u} K_{u u}^{-1} K_{u f}\right]$, i.e. fully independent training conditionals
- PP can make poor predictions in low noise [S Q-C M R W]
- PITC uses blocks of training points to improve the approximation
- BCM (Tresp, 2000) is the same approximation as PITC, except that the test points are the inducing set

Sparse GPs using Pseudo-inputs

(Snelson and Ghahramani, 2006)

- FITC approximation, but inducing inputs are new points, in neither the training or test sets
- Locations of the inducing inputs are changed along with hyperparameters so as to maximize the approximate marginal likelihood

Complexity

Method	Storage	Initialization	Mean	Variance
SD	$O\left(m^{2}\right)$	$O\left(m^{3}\right)$	$O(m)$	$O\left(m^{2}\right)$
SR	$O(m n)$	$O\left(m^{2} n\right)$	$O(m)$	$O\left(m^{2}\right)$
PP, FITC	$O(m n)$	$O\left(m^{2} n\right)$	$O(m)$	$O\left(m^{2}\right)$
BCM	$O(m n)$		$O(m n)$	$O(m n)$

Empirical Comparison

- Robot arm problem, 44,484 training cases in 21-d, 4,449 test cases
- For SD method subset of size m was chosen at random, hyperparameters set by optimizing marginal likelihood (ARD). Repeated 10 times
- For SR, PP and BCM methods same subsets/hyperparameters were used (BCM: hyperparameters only)

Method	m	SMSE	MSLL	mean runtime (s)
SD	256	0.0813 ± 0.0198	-1.4291 ± 0.0558	0.8
	512	0.0532 ± 0.0046	-1.5834 ± 0.0319	2.1
	1024	0.0398 ± 0.0036	-1.7149 ± 0.0293	6.5
	2048	0.0290 ± 0.0013	-1.8611 ± 0.0204	25.0
	4096	0.0200 ± 0.0008	-2.0241 ± 0.0151	100.7
SR	256	0.0351 ± 0.0036	-1.6088 ± 0.0984	11.0
	512	0.0259 ± 0.0014	-1.8185 ± 0.0357	27.0
	1024	0.0193 ± 0.0008	-1.9728 ± 0.0207	79.5
	2048	0.0150 ± 0.0005	-2.1126 ± 0.0185	284.8
	4096	0.0110 ± 0.0004	-2.2474 ± 0.0204	927.6
PP	256	0.0351 ± 0.0036	-1.6940 ± 0.0528	17.3
	512	0.0259 ± 0.0014	-1.8423 ± 0.0286	41.4
	1024	0.0193 ± 0.0008	-1.9823 ± 0.0233	95.1
	2048	0.0150 ± 0.0005	-2.1125 ± 0.0202	354.2
	4096	0.0110 ± 0.0004	-2.2399 ± 0.0160	964.5
BCM	256	0.0314 ± 0.0046	-1.7066 ± 0.0550	506.4
	512	0.0281 ± 0.0055	-1.7807 ± 0.0820	660.5
	1024	0.0180 ± 0.0010	-2.0081 ± 0.0321	1043.2
	2048	0.0136 ± 0.0007	-2.1364 ± 0.0266	1920.7

- Judged on time, for this dataset SD, SR and PP are on the same trajectory, with BCM being worse
- But what about greedy vs random subset selection, methods to set hyperparameters, different datasets?
- In general, we must take into account training (initialization), testing and hyperparameter learning times separately [S Q-C M R W]. Balance will depend on your situation.

围 Lehel Csató and Manfred Opper．
Sparse On－Line Gaussian Processes．
Neural Computation，14（3）：641－668， 2002.
目 G．Ferrari Trecate，C．K．I．Williams，and M．Opper．
Finite－dimensional Approximation of Gaussian Processes．
In M．S．Kearns，S．A．Solla，and D．A．Cohn，editors，
Advances in Neural Information Processing Systems 11， pages 218－224．MIT Press， 1999.

目 N．De Freitas，Y．Wang，M．Mahdaviani，and D．Lang．
Fast Krylov methods for N －body learning．
In NIPS 18， 2006.
围 A．Gray．
Fast kernel matrix－vector multiplication with application to
Gaussian process learning．
Technical Report CMU－CS－04－110，School of Computer Science，Carnegie Mellon University， 2004.

國 J．Quiñonero－Candela and C．E．Rasmussen．
A unifying view of sparse approximate Gaussian process regression．
Journal of Machine Learning Research，6：1939－1959， 2005.

雷 M．Seeger，C．K．I．Williams，and N．Lawrence．
Fast Forward Selection to Speed Up Sparse Gaussian
Process Regression．
In C．M．Bishop and B．J．Frey，editors，Proceedings of the
Ninth International Workshop on Artificial Intelligence and
Statistics．Society for Artificial Intelligence and Statistics， 2003.

國 Y．Shen，A．Ng，and M．Seeger．
Fast Gaussian process regression using KD－trees．
In NIPS 18， 2006.
B．W．Silverman．

Some aspects of the spline smoothing approach to non-parametric regression curve fitting.
J. Roy. Stat. Soc. B, 47(1):1-52, 1985.
E. Enelson and Z. Ghahramani.

Sparse Gaussian processes using pseudo-inputs.
In NIPS 18. MIT Press, 2006.
雷 M. L. Stein.
The Screening Effect in Kriging.
Annals of Statistics, 30(1):298-323, 2002.
冨 V. Tresp.
A Bayesian Committee Machine.
Neural Computation, 12(11):2719-2741.
E. C. Yang, R. Duraiswami, and L. Davis.

Efficient kernel machines using the improved fast Gauss transform.
In NIPS 17, 2005.

