Identifying Optimal Sequential Decisions

Vanessa Didelez
Department of Mathematics University of Bristol
joint work with A. Philip Dawid (Cambridge)

Helsinki, July 2008

Main Messages

To find an optimal sequential decision strategy must allow it to depend on all available information.

Conditions for identifying a decision strategy that depends on all available information are 'simple'.

Note: we use influence diagrams instead of causal DAGs.

Data Situation

A_{1}, \ldots, A_{N} "action" variables \rightarrow can be 'manipulated'
L_{1}, \ldots, L_{N} covariates \rightarrow (available) background information
$Y=L_{N+1}$ response variable
all measured over time, L_{i} before A_{i}
$\mathbf{A}^{<i}=\left(A_{1}, \ldots, A_{i-1}\right)$ past up to before $i ; \mathbf{A}^{\leq i}, \mathbf{A}^{>i}$ etc. similarly

Example

Consider patients receiving anticoagulant treatment \Rightarrow has to be monitored and adjusted.
$L_{i}=$ blood test results, other health indicators.
$A_{i}=$ dose of anticoagulant drug.
Plausibly, 'optimal' dose A_{i} will be a function of $\mathbf{L}^{\leq i}$ (and poss. $\mathbf{A}^{<i}$).

Strategies

Strategy $\mathbf{s}=\left(s_{1}, \ldots, s_{N}\right)$ set of functions assigning an action

$$
a_{i}=s_{i}\left(\mathbf{a}^{<i}, \mathbf{l} \leq i\right) \text { to each history }\left(\mathbf{a}^{<i}, \mathbf{l}^{\leq i}\right)
$$

(Could be stochastic, then dependence on $\mathbf{a}^{<i}$ relevant.)

Also called: conditional / dynamic / adaptive strategies.

Evaluation

Let $p(\cdot ; \mathbf{s})$ be distribution under strategy \mathbf{s}.
Let $k(\cdot)$ be a loss function. Want to evaluate $E(k(Y) ; \mathbf{s})$.
Define

$$
f\left(\mathbf{a}^{\leq j}, \mathbf{l}^{\leq i}\right):=E\left\{k(Y) \mid \mathbf{a}^{\leq j}, \mathbf{l}^{\leq i} ; \mathbf{s}\right\} \quad i=1, \ldots, N ; j=i-1, i .
$$

Then obtain $f(\emptyset)=E\left(k(Y)\right.$; s) from $f\left(\mathbf{a}^{\leq N}, \mathbf{l}^{\leq N}\right)$ iteratively by:

$$
\begin{aligned}
& f\left(\mathbf{a}^{<i}, \mathbf{l}^{\leq i}\right)=\sum_{a_{i}} \underbrace{p\left(a_{i} \mid \mathbf{a}^{<i}, \mathbf{l}^{\leq i} ; \mathbf{s}\right)}_{\text {known by s }} \times f\left(\mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}\right) \\
& f\left(\mathbf{a}^{<i}, \mathbf{l}^{<i}\right)=\sum_{l_{i}} p\left(l_{i} \mid \mathbf{a}^{<i}, \mathbf{l}^{<i} ; \mathbf{s}\right) \times f\left(\mathbf{a}^{<i}, \mathbf{l}^{\leq i}\right) .
\end{aligned}
$$

(cf. extensive form analysis)

Identifiability

Problem: doctors are following their 'gut feeling' (and not a specific strategy) in modifying the dose of anticoagulant drug.

Identifiability: can we find the optimal strategy from such data?
In particular: $p\left(l_{i} \mid \mathbf{a}^{<i}, \mathbf{l}^{<i} ; \mathbf{s}\right)$ then not known.
But could estimate $p\left(l_{i} \mid \mathbf{a}^{<i}, \mathbf{l}^{<i} ; o\right)$ under observational regime. Introduce indicator

$$
\sigma= \begin{cases}o, & \text { observational regime } \\ s, & \mathbf{s} \in \mathcal{S}=\text { set of strategies }\end{cases}
$$

Simple Stability

Sufficient for identifiability is

$$
p\left(l_{i} \mid \mathbf{a}^{<i}, \mathbf{l}^{<i} ; \mathbf{s}\right)=p\left(l_{i} \mid \mathbf{a}^{<i}, \mathbf{l}^{<i} ; o\right) \quad \text { for all } i=1, \ldots, N+1
$$

or (via intervention indicator)

$$
L_{i} \Perp \sigma \mid\left(\mathbf{A}^{<i}, \mathbf{L}^{<i}\right) \quad \text { for all } i=1, \ldots, N+1
$$

Or graphically:

Extended Stability

Might not be able to assess simple stability without taking unobserved variables into account.
\Rightarrow extend covariates \mathbf{L} to include unobserved / hidden variables $\mathbf{U}=$ $\left(U_{1}, \ldots, U_{N}\right)$ and check if simple stability can be deduced.

Example 1: particular underlying structure (note: $L_{1}=\emptyset$)

Simple stability violated as $Y \not \Perp \sigma \mid\left(A_{1}, A_{2}, L_{2}\right)$.

Examples

Example 2: different underlying structure

Simple stability satisfied.

Examples

Example 3: another different underlying structure

Simple stability violated: $L_{2} \not \Perp \sigma \mid A_{1}$ and $Y \not \Perp \sigma \mid\left(A_{1}, A_{2}, L_{2}\right)$

Relax Simple Stability?

For given strategy s can relax conditions for identifiability.
Assume extended stability holds wrt. $\mathbf{A}, \mathbf{L}, \mathbf{U}, Y$, and define 'new' joint distributions $p_{i}(\mathbf{A}, \mathbf{L}, \mathbf{U}, Y)=$

$$
p\left(\mathbf{A}^{\leq i}, \mathbf{L}^{\leq i}, \mathbf{U}^{\leq i} ; o\right) \times p\left(\mathbf{A}^{>i}, \mathbf{L}^{>i}, \mathbf{U}^{>i}, Y \mid \mathbf{A}^{\leq i}, \mathbf{L}^{\leq i}, \mathbf{U}^{\leq i} ; \mathbf{s}\right)
$$

Relax Simple Stability?

For given strategy s can relax conditions for identifiability.
Assume extended stability holds wrt. A, L, U, Y, and define 'new' joint distributions $p_{i}(\mathbf{A}, \mathbf{L}, \mathbf{U}, Y)=$

$$
\underbrace{p\left(\mathbf{A}^{\leq i}, \mathbf{L}^{\leq i}, \mathbf{U}^{\leq i} ; o\right)}_{\text {obs. for } \leq i} \times p\left(\mathbf{A}^{>i}, \mathbf{L}^{>i}, \mathbf{U}^{>i}, Y \mid \mathbf{A}^{\leq i}, \mathbf{L}^{\leq i}, \mathbf{U}^{\leq i} ; \mathbf{s}\right)
$$

Relax Simple Stability?

For given strategy s can relax conditions for identifiability.
Assume extended stability holds wrt. A, L, U, Y, and define 'new' joint distributions $p_{i}(\mathbf{A}, \mathbf{L}, \mathbf{U}, Y)=$

$$
p\left(\mathbf{A}^{\leq i}, \mathbf{L}^{\leq i}, \mathbf{U}^{\leq i} ; o\right) \times \underbrace{p\left(\mathbf{A}^{>i}, \mathbf{L}^{>i}, \mathbf{U}^{>i}, Y \mid \mathbf{A}^{\leq i}, \mathbf{L}^{\leq i}, \mathbf{U}^{\leq i} ; \mathbf{s}\right)}_{\text {strategy for }>i}
$$

Relax Simple Stability?

For given strategy s can relax conditions for identifiability.
Assume extended stability holds wrt. A, L, U, Y, and define 'new' joint distributions $p_{i}(\mathbf{A}, \mathbf{L}, \mathbf{U}, Y)=$

$$
p\left(\mathbf{A}^{\leq i}, \mathbf{L}^{\leq i}, \mathbf{U}^{\leq i} ; o\right) \times p\left(\mathbf{A}^{>i}, \mathbf{L}^{>i}, \mathbf{U}^{>i}, Y \mid \mathbf{A}^{\leq i}, \mathbf{L}^{\leq i}, \mathbf{U}^{\leq i} ; \mathbf{s}\right)
$$

Theorem 1: sufficient condition for identifiability of s is

$$
p_{i-1}\left(y \mid \mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}\right)=p_{i}\left(y \mid \mathbf{a}^{\leq i}, \mathbf{l}^{\leq i}\right), \quad i=1, \ldots, N .
$$

(Simple stability implies the above.)

Comments

Theorem 1, in words:
once we know a_{i} and the observable past variables the distribution of Y does not depend on how a_{i} was generated, when $\mathbf{a}^{<i}$ is observational and $\mathbf{a}^{>i}$ follows the strategy.

Note:

Essentially same as Pearl \& Robins (1995) for unconditional strategies.

Comments

Theorem 1, in words:

once we know a_{i} and the observable past variables the distribution of Y does not depend on how a_{i} was generated, when $\mathbf{a}^{<i}$ is observational and $\mathbf{a}^{>i}$ follows the strategy.

Graphical check: draw graphs D_{i} with

- $\mathrm{pa}\left(A_{k}\right)$ as under observational regime for $k<i$
- $\mathrm{pa}\left(A_{k}\right)$ as under strategy for $k>i$
- $\mathrm{pa}\left(A_{i}\right)$ union of both regimes and σ.
\Rightarrow check separation $Y \Perp \sigma \mid\left(\mathbf{A}^{\leq i}, \mathbf{L}^{\leq i}\right)$ in $D_{i}, i=1, \ldots, N$

Example 3 ctd.

Assumed underlying structure (note: $L_{1}=\emptyset$ here)

Now: also assume that s_{2} is unconditional, i.e. choice of action A_{2} in our strategy does not depend on past observations.

Example 3 ctd.

Then D_{1} and D_{2} are given by

Can see that $Y \Perp \sigma \mid A_{1}$ in D_{1}

and $Y \Perp \sigma \mid\left(A_{1}, A_{2}, L_{2}\right)$ in D_{2}.

Example 3 ctd.

However, if s_{2} is conditional, i.e. A_{2} depends on past observations in our strategy, then D_{1} and D_{2} are given by

Now $Y \not \perp \sigma \mid A_{1}$ in D_{1}.
This suggests that the 'relaxed' conditions are not so 'relaxed' for conditional interventions.

Result

Assumption 1: $\operatorname{pa}_{\mathbf{s}}\left(A_{i}\right) \subset \mathrm{pa}_{o}\left(A_{i}\right)$ for all $i=1, \ldots, N$.
Assumption 2: each L_{1}, \ldots, L_{N} is an ancestor of Y in D_{0} (as under strategy s), $i=1, \ldots, N$.

Theorem 2: With these assumptions, if the graphical check of Theorem
1 succeeds then we also have simple stability.
Optimal strategies: Assumption 2 satisfied because

- actions A_{i} must be allowed to depend on past $\mathbf{L} \leq i$
- and A_{i} ancestors of Y.

Conclusions and Outlook

- A given strategy s can be identified using simple stability or Theorem 1 as criteria.
\Rightarrow latter is cumbersome to check.
- When we aim at searching for an optimal strategy, we need to be able to identify strategies that are conditional on all available information. \Rightarrow only need to check simple stability criterion.
- For the same graphical structure, an unconditional strategy may be identified while a conditional one is not.

