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Main Messages

To find an optimal sequential decision strategy must allow it to depend

on all available information.

Conditions for identifying a decision strategy that depends on all

available information are ‘simple’.

Note: we use influence diagrams instead of causal DAGs.
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Data Situation

A1, . . . , AN “action” variables → can be ‘manipulated’

L1, . . . , LN covariates → (available) background information

Y = LN+1 response variable

all measured over time, Li before Ai

A
<i = (A1, . . . , Ai−1) past up to before i; A

≤i, A
>i etc. similarly
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Example

Consider patients receiving anticoagulant treatment ⇒ has to be

monitored and adjusted.

Li = blood test results, other health indicators.

Ai = dose of anticoagulant drug.

Plausibly, ‘optimal’ dose Ai will be a function of L
≤i (and poss. A

<i).
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Strategies

Strategy s = (s1, . . . , sN) set of functions assigning an action

ai = si(a
<i, l≤i) to each history (a<i, l≤i)

(Could be stochastic, then dependence on a
<i relevant.)

Also called: conditional / dynamic / adaptive strategies.
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Evaluation

Let p(·; s) be distribution under strategy s.

Let k(·) be a loss function. Want to evaluate E(k(Y ); s).

Define

f(a≤j, l≤i) := E{k(Y )|a≤j, l≤i; s} i = 1, . . . , N ; j = i − 1, i.

Then obtain f(∅) = E(k(Y ); s) from f(a≤N , l≤N) iteratively by:

f(a<i, l≤i) =
∑

ai

p(ai|a
<i, l≤i; s)

︸ ︷︷ ︸

known by s

×f(a≤i, l≤i)

f(a<i, l<i) =
∑

li

p(li|a
<i, l<i; s) × f(a<i, l≤i).

(cf. extensive form analysis)
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Identifiability

Problem: doctors are following their ‘gut feeling’ (and not a specific

strategy) in modifying the dose of anticoagulant drug.

Identifiability: can we find the optimal strategy from such data?

In particular: p(li|a<i, l<i; s) then not known.

But could estimate p(li|a
<i, l<i; o) under observational regime.

Introduce indicator

σ =

{
o, observational regime

s, s ∈ S = set of strategies
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Simple Stability

Sufficient for identifiability is

p(li|a
<i, l<i; s) = p(li|a

<i, l<i; o) for all i = 1, . . . , N + 1

or (via intervention indicator)

Li⊥⊥σ|(A<i,L<i) for all i = 1, . . . , N + 1

Or graphically:

YL1 L2A1 A2
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Extended Stability

Might not be able to assess simple stability without taking unobserved

variables into account.

⇒ extend covariates L to include unobserved / hidden variables U =

(U1, . . . , UN) and check if simple stability can be deduced.

Example 1: particular underlying structure (note: L1 = ∅)

U

A1 L2 A2 Y

σσσσ

Simple stability violated as Y ⊥⊥/ σ | (A1, A2, L2).
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Examples

Example 2: different underlying structure

U

A1 L2 A2 Y

σσσσ

Simple stability satisfied.
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Examples

Example 3: another different underlying structure

A1 L2 A2 Y

U1 U2

σσσσ

Simple stability violated: L2⊥⊥/ σ | A1 and Y ⊥⊥/ σ | (A1, A2, L2)
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A,L,U, Y , and define ‘new’ joint

distributions pi(A,L,U, Y ) =

p(A≤i,L≤i,U≤i; o) × p(A>i,L>i,U>i, Y |A≤i,L≤i,U≤i; s)
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A,L,U, Y , and define ‘new’ joint

distributions pi(A,L,U, Y ) =

p(A≤i,L≤i,U≤i; o)
︸ ︷︷ ︸

obs. for ≤ i

×p(A>i,L>i,U>i, Y |A≤i,L≤i,U≤i; s)
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A,L,U, Y , and define ‘new’ joint

distributions pi(A,L,U, Y ) =

p(A≤i,L≤i,U≤i; o) × p(A>i,L>i,U>i, Y |A≤i,L≤i,U≤i; s)
︸ ︷︷ ︸

strategy for > i
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Relax Simple Stability?

For given strategy s can relax conditions for identifiability.

Assume extended stability holds wrt. A,L,U, Y , and define ‘new’ joint

distributions pi(A,L,U, Y ) =

p(A≤i,L≤i,U≤i; o) × p(A>i,L>i,U>i, Y |A≤i,L≤i,U≤i; s)

Theorem 1: sufficient condition for identifiability of s is

pi−1(y|a
≤i, l≤i) = pi(y|a

≤i, l≤i), i = 1, . . . , N.

(Simple stability implies the above.)
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Comments

Theorem 1, in words:

once we know ai and the observable past variables the distribution of Y

does not depend on how ai was generated, when a
<i is observational

and a
>i follows the strategy.

Note:

Essentially same as Pearl & Robins (1995) for unconditional strategies.
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Comments

Theorem 1, in words:

once we know ai and the observable past variables the distribution of Y

does not depend on how ai was generated, when a
<i is observational

and a
>i follows the strategy.

Graphical check: draw graphs Di with

— pa(Ak) as under observational regime for k < i

— pa(Ak) as under strategy for k > i

— pa(Ai) union of both regimes and σ.

⇒ check separation Y ⊥⊥σ|(A≤i,L≤i) in Di, i = 1, . . . , N
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Example 3 ctd.

Assumed underlying structure (note: L1 = ∅ here)

A1 L2 A2 Y

U1 U2

σσσσ

Now: also assume that s2 is unconditional, i.e. choice of action A2 in

our strategy does not depend on past observations.
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Example 3 ctd.

Then D1 and D2 are given by

A1 L2 A2 Y

U1 U2

σσσσ

A1 L2 A2 Y

U1 U2

σσσσ

Can see that Y ⊥⊥σ|A1 in D1 and Y ⊥⊥σ|(A1, A2, L2) in D2.
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Example 3 ctd.

However, if s2 is conditional, i.e. A2 depends on past observations in

our strategy, then D1 and D2 are given by

A1 L2 A2 Y

U1 U2

σσσσ

A1 L2 A2 Y

U1 U2

σσσσ

Now Y ⊥⊥/ σ|A1 in D1.

This suggests that the ‘relaxed’ conditions are not so ‘relaxed’ for

conditional interventions.
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Result

Assumption 1: pas(Ai) ⊂pao(Ai) for all i = 1, . . . , N .

Assumption 2: each L1, . . . , LN is an ancestor of Y in D0 (as under

strategy s), i = 1, . . . , N .

Theorem 2: With these assumptions, if the graphical check of Theorem

1 succeeds then we also have simple stability.

Optimal strategies: Assumption 2 satisfied because

— actions Ai must be allowed to depend on past L
≤i

— and Ai ancestors of Y .
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Conclusions and Outlook

• A given strategy s can be identified using simple stability or Theorem

1 as criteria.

⇒ latter is cumbersome to check.

• When we aim at searching for an optimal strategy, we need to be able

to identify strategies that are conditional on all available information.

⇒ only need to check simple stability criterion.

• For the same graphical structure, an unconditional strategy may be

identified while a conditional one is not.
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