Approach 000 0000000 000000 Experiments 0000 000 Discussion 000 0000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Learning (Convex Inference of Marginals)

Justin Domke

University of Maryland

Approach 000 0000000 000000 Experiments

Discussion 000 0000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline

Introduction

Motivation Overview of the approach

Approach

Inference Learning (Loss functions) Learning (Derivatives of beliefs)

Experiments

Introduction Results

Discussion

Summary

Approach 000 0000000 000000 Experiments

Discussion 000 0000000000

Outline

Introduction

Motivation

Overview of the approach

Approach

Inference Learning (Loss functions) Learning (Derivatives of beliefs)

Experiments

Introduction Results

Discussion

Summary

<ロ> (四) (四) (三) (三) (三)

• We have only $\{(\hat{\mathbf{x}}, \hat{\mathbf{y}})\} \sim p(\mathbf{x}, \mathbf{y})$.

= nac

• We have only $\{(\hat{\mathbf{x}}, \hat{\mathbf{y}})\} \sim p(\mathbf{x}, \mathbf{y}).$

Approach 000 0000000 000000 Experiments

Discussion 000 000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Setting

• True (unknown) distribution $p(\mathbf{x}, \mathbf{y})$

Maximum Likelihood Approach:

- 1. Fit a graphical model $q(\mathbf{x}|\mathbf{y})$ by max (conditional) likelihood. (Learning)
- 2. Given y, compute $q(x_i|y)$. (Inference)

Justification: Given a correct model, $q(\mathbf{x}|\mathbf{y}) \rightarrow p(\mathbf{x}|\mathbf{y})$.

Approach 000 0000000 000000 Experiments 0000 000 Discussion 000 000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Setting

• True (unknown) distribution $p(\mathbf{x}, \mathbf{y})$

Maximum Likelihood Approach:

- 1. Fit a graphical model $q(\mathbf{x}|\mathbf{y})$ by max (conditional) likelihood. (Learning)
- 2. Given y, compute $q(x_i|y)$. (Inference)

Justification: Given a correct model, $q(\mathbf{x}|\mathbf{y}) \rightarrow p(\mathbf{x}|\mathbf{y})$.

Approach 000 0000000 000000 Experiments 0000 000 Discussion 000 0000000000

◆ロト ◆得ト ◆ヨト ◆ヨト ヨー のくべ

Problems with Max Likelihood

• In many cases, this works well.

• Problems arise, particularly when the model has high treewidth.

- Computational Intractability
- Model Defects

Approach 000 0000000 000000 Experiments 0000 000 Discussion 000 0000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- In many cases, this works well.
- Problems arise, particularly when the model has high treewidth.
 - Computational Intractability
 - Model Defects

Introduction 0000●0 00 Approach 000 0000000 000000 Experiments 0000 000 Discussion 000 0000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- 1. Computational Intractability.
 - Often, max likelihood can't be done.
 - Even if it could, would the results be what we want under approximate inference?

Approach 000 0000000 000000 Experiments 0000 000 Discussion 000 0000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- 1. Computational Intractability.
 - Often, max likelihood can't be done.
 - Even if it could, would the results be what we want under <u>approximate</u> inference?

Introduction 00000● 00 Approach 000 0000000 000000 Experiments 0000 000 Discussion 000 0000000000

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- 2. Model Defects
 - Possible to set θ such that $q(\mathbf{x}|\mathbf{y}; \theta) = p(\mathbf{x}|\mathbf{y})$?
 - Max conditional likelihood $\approx E[KL-divergence]$ $\arg\min_{\theta} \sum_{\mathbf{y}} p(\mathbf{y}) \sum_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}) \log \frac{p(\mathbf{x}|\mathbf{y})}{q(\mathbf{x}|\mathbf{y};\theta)}$ $= \arg\min_{\theta} - \sum_{\mathbf{y}} p(\mathbf{y}) \sum_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}) \log q(\mathbf{x}|\mathbf{y};\theta)$ $\approx \arg\max_{\theta} \sum_{\{(\hat{\mathbf{x}}, \hat{\mathbf{y}})\}} \log q(\hat{\mathbf{x}}|\hat{\mathbf{y}};\theta)$
 - min KL-divergence \neq best marginals.
 - (Even assuming exact inference.)

Approach 000 0000000 000000 Experiments 0000 000 Discussion 000 0000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- 2. Model Defects
 - Possible to set θ such that $q(\mathbf{x}|\mathbf{y}; \theta) = p(\mathbf{x}|\mathbf{y})$?
 - Max conditional likelihood $\approx E[KL-divergence]$ $\arg\min_{\theta} \sum_{\mathbf{y}} p(\mathbf{y}) \sum_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}) \log \frac{p(\mathbf{x}|\mathbf{y})}{q(\mathbf{x}|\mathbf{y};\theta)}$ $= \arg\min_{\theta} - \sum_{\mathbf{y}} p(\mathbf{y}) \sum_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}) \log q(\mathbf{x}|\mathbf{y};\theta)$ $\approx \arg\max_{\theta} \sum_{\{(\hat{\mathbf{x}}, \hat{\mathbf{y}})\}} \log q(\hat{\mathbf{x}}|\hat{\mathbf{y}};\theta)$
 - min KL-divergence \neq best marginals.
 - (Even assuming exact inference.)

Approach 000 0000000 000000 Experiments 0000 000 Discussion 000 0000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- 2. Model Defects
 - Possible to set θ such that $q(\mathbf{x}|\mathbf{y}; \theta) = p(\mathbf{x}|\mathbf{y})$?
 - Max conditional likelihood $\approx E[KL-divergence]$ $\arg\min_{\theta} \sum_{\mathbf{y}} p(\mathbf{y}) \sum_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}) \log \frac{p(\mathbf{x}|\mathbf{y})}{q(\mathbf{x}|\mathbf{y};\theta)}$ $= \arg\min_{\theta} - \sum_{\mathbf{y}} p(\mathbf{y}) \sum_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}) \log q(\mathbf{x}|\mathbf{y};\theta)$ $\approx \arg\max_{\theta} \sum_{\{(\hat{\mathbf{x}}, \hat{\mathbf{y}})\}} \log q(\hat{\mathbf{x}}|\hat{\mathbf{y}};\theta)$
 - min KL-divergence \neq best marginals.
 - (Even assuming exact inference.)

Approach 000 0000000 000000 Experiments

Discussion 000 0000000000

Outline

Introduction

Motivation

Overview of the approach

Approach

Inference Learning (Loss functions) Learning (Derivatives of beliefs)

Experiments

Introduction Results

Discussion

Summary

Approach 000 0000000 000000 Experiments 0000 000

Discussion 000 0000000000

- Goal: Sidestep problems of intractability and model defects.
- In approximate inference, $q(\mathbf{x}|\mathbf{y})$ is often used to create a free energy function.

$$F(\mathbf{y}, \{b_r(\mathbf{x}_r)\}) \quad \{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} F(\mathbf{y}, \{b_r(\mathbf{x}_r)\})$$

- Idea: Think of F as mapping from y to {b^{*}_r(x_r)}. Directly fit F to make the mapping as accurate as possible.
- Computational Tractability: Restrict F to be convex.
- Model Defects: Learn by minimizing <u>empirical risk</u>, where risk measures the accuracy of marginals.

Discussion 000 0000000000

Overview

- Goal: Sidestep problems of intractability and model defects.
- In approximate inference, $q(\mathbf{x}|\mathbf{y})$ is often used to create a free energy function.

 $F(\mathbf{y}, \{b_r(\mathbf{x}_r)\}) \quad \{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} F(\mathbf{y}, \{b_r(\mathbf{x}_r)\})$

- Idea: Think of F as mapping from y to {b^{*}_r(x_r)}. Directly fit F to make the mapping as accurate as possible.
- Computational Tractability: Restrict F to be convex.
- Model Defects: Learn by minimizing <u>empirical risk</u>, where risk measures the accuracy of marginals.

Discussion 000 0000000000

- Goal: Sidestep problems of intractability and model defects.
- In approximate inference, $q(\mathbf{x}|\mathbf{y})$ is often used to create a free energy function.

$$F(\mathbf{y}, \{b_r(\mathbf{x}_r)\}) \quad \{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} F(\mathbf{y}, \{b_r(\mathbf{x}_r)\})$$

- Idea: Think of F as mapping from y to $\{b_r^*(\mathbf{x}_r)\}$. Directly fit F to make the mapping as accurate as possible.
- Computational Tractability: Restrict F to be convex.
- Model Defects: Learn by minimizing <u>empirical risk</u>, where risk measures the accuracy of marginals.

Discussion 000 0000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Goal: Sidestep problems of intractability and model defects.
- In approximate inference, $q(\mathbf{x}|\mathbf{y})$ is often used to create a free energy function.

$$F(\mathbf{y}, \{b_r(\mathbf{x}_r)\}) \quad \{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} F(\mathbf{y}, \{b_r(\mathbf{x}_r)\})$$

- Idea: Think of F as <u>mapping</u> from y to {b^{*}_r(x_r)}. Directly fit F to make the mapping as accurate as possible.
- Computational Tractability: Restrict F to be convex.
- Model Defects: Learn by minimizing <u>empirical risk</u>, where risk measures the accuracy of marginals.

Discussion 000 0000000000

- Goal: Sidestep problems of intractability and model defects.
- In approximate inference, $q(\mathbf{x}|\mathbf{y})$ is often used to create a free energy function.

$$F(\mathbf{y}, \{b_r(\mathbf{x}_r)\}) \quad \{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} F(\mathbf{y}, \{b_r(\mathbf{x}_r)\})$$

- Idea: Think of F as <u>mapping</u> from y to {b^{*}_r(x_r)}. Directly fit F to make the mapping as accurate as possible.
- Computational Tractability: Restrict F to be convex.
- Model Defects: Learn by minimizing <u>empirical risk</u>, where risk measures the accuracy of marginals.

Approach •00 •0000000 •000000 Experiments

(日) (四) (三) (三) (三)

Discussion 000 0000000000

Outline

Introduction

Motivation Overview of the approach

Approach

Inference

Learning (Loss functions) Learning (Derivatives of beliefs)

Experiments

Introduction Results

Discussion

Summary

Experiments

Discussion 000 0000000000

Inference

$$F = \sum_{f \in \mathscr{F}} \sum_{r \in \mathscr{R}} \sum_{\mathbf{x}_r} w_f(\mathbf{x}_r, \mathbf{y}_r) f(b_r(\mathbf{x}_r))$$

• Typically, $\mathscr{F} = \{b, b \log b\}$. Anything convex over (0,1) is OK.

$$\{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} F(\mathbf{y}, \{b_r(\mathbf{x}_r)\})$$

• Minimization is over some relaxation of the marginal polytope

ocal consistency:
$$\sum_{\mathbf{x}_{c\setminus i}} b_c(\mathbf{x}_c) = b_i(x_i)$$
$$\sum_{\mathbf{x}_c} b_c(\mathbf{x}_c) = 1 \qquad \sum_{x_i} b_i(x_i) = 1$$
$$b_c(\mathbf{x}_c) \ge \mathbf{0} \qquad b_i(x_i) \ge 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Experiments

Discussion 000 0000000000

Inference

$$F = \sum_{f \in \mathscr{F}} \sum_{r \in \mathscr{R}} \sum_{\mathbf{x}_r} w_f(\mathbf{x}_r, \mathbf{y}_r) f(b_r(\mathbf{x}_r))$$

• Typically, $\mathscr{F} = \{b, b \log b\}$. Anything convex over (0,1) is OK.

$$\{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} F(\mathbf{y}, \{b_r(\mathbf{x}_r)\})$$

• Minimization is over some relaxation of the marginal polytope

ocal consistency:
$$\sum_{\mathbf{x}_{c\setminus i}} b_c(\mathbf{x}_c) = b_i(x_i)$$
$$\sum_{\mathbf{x}_c} b_c(\mathbf{x}_c) = 1 \qquad \sum_{x_i} b_i(x_i) = 1$$
$$b_c(\mathbf{x}_c) \ge \mathbf{0} \qquad b_i(x_i) \ge 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Experiments

Inference

$$F = \sum_{f \in \mathscr{F}} \sum_{r \in \mathscr{R}} \sum_{\mathbf{x}_r} w_f(\mathbf{x}_r, \mathbf{y}_r) f(b_r(\mathbf{x}_r))$$

• Typically, $\mathscr{F} = \{b, b \log b\}$. Anything convex over (0,1) is OK.

$$\{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} F(\mathbf{y}, \{b_r(\mathbf{x}_r)\})$$

• Minimization is over some relaxation of the marginal polytope

$$\begin{array}{ll} \text{ocal consistency:} & \sum_{\mathbf{x}_c \setminus i} b_c(\mathbf{x}_c) = b_i(x_i) \\ & \sum_{\mathbf{x}_c} b_c(\mathbf{x}_c) = 1 & \sum_{x_i} b_i(x_i) = 1 \\ & b_c(\mathbf{x}_c) \ge \mathbf{0} & b_i(x_i) \ge 0 \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Experiments

Discussion 000 0000000000

Inference

$$F = \sum_{f \in \mathscr{F}} \sum_{r \in \mathscr{R}} \sum_{\mathbf{x}_r} w_f(\mathbf{x}_r, \mathbf{y}_r) f(b_r(\mathbf{x}_r))$$

• Typically, $\mathscr{F} = \{b, b \log b\}$. Anything convex over (0,1) is OK.

$$\{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} F(\mathbf{y}, \{b_r(\mathbf{x}_r)\})$$

• Minimization is over some relaxation of the marginal polytope

ocal consistency:
$$\sum_{\mathbf{x}_{c\setminus i}} b_c(\mathbf{x}_c) = b_i(x_i)$$
$$\sum_{\mathbf{x}_c} b_c(\mathbf{x}_c) = 1 \qquad \sum_{x_i} b_i(x_i) = 1$$
$$b_c(\mathbf{x}_c) \ge \mathbf{0} \qquad b_i(x_i) \ge 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Approach

Experiments

Discussion 000 0000000000

Inference

$$\{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} \sum_{f \in \mathscr{F}} \sum_{r \in \mathscr{R}} \sum_{\mathbf{x}_r} w_f(\mathbf{x}_r, \mathbf{y}_r) f(b_r(\mathbf{x}_r))$$

such that (local consistency)

Equivalent, more convenient formulation:

$$\begin{split} \mathbf{b}^* &= \arg\min_{\mathbf{b}} \sum_{f \in \mathscr{F}} \mathbf{w}_f(\mathbf{y})^T f(\mathbf{b}) & \mathbf{b} \iff \{b_r(\mathbf{x}_r)\}, \forall r, \mathbf{x}_r \\ & \mathbf{w}_f(\mathbf{y}) \iff w_f(\mathbf{x}_r, \mathbf{y}_r), \forall r, \mathbf{x}_r \\ & \mathbf{b} \ge \mathbf{0}. \end{split}$$

Experiments 0000 000 Discussion 000 0000000000

Inference

$$\{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} \sum_{f \in \mathscr{F}} \sum_{r \in \mathscr{R}} \sum_{\mathbf{x}_r} w_f(\mathbf{x}_r, \mathbf{y}_r) f(b_r(\mathbf{x}_r))$$

such that (local consistency)

Equivalent, more convenient formulation:

$$\mathbf{b}^* = \arg\min_{\mathbf{b}} \sum_{f \in \mathscr{F}} \mathbf{w}_f(\mathbf{y})^T f(\mathbf{b}) \qquad \mathbf{b} \quad \leftrightarrow \quad \{b_r(\mathbf{x}_r)\}, \forall r, \mathbf{x}_r \\ \text{such that} \qquad A\mathbf{b} = \mathbf{d} \\ \mathbf{b} \ge \mathbf{0}. \end{cases}$$

Experiments 0000 000 Discussion 000 0000000000

Inference

$$\{b_r^*(\mathbf{x}_r)\} = \arg\min_{\{b_r\}} \sum_{f \in \mathscr{F}} \sum_{r \in \mathscr{R}} \sum_{\mathbf{x}_r} w_f(\mathbf{x}_r, \mathbf{y}_r) f(b_r(\mathbf{x}_r))$$

such that (local consistency)

Equivalent, more convenient formulation:

$$\begin{split} \mathbf{b}^* &= \arg\min_{\mathbf{b}} \sum_{f \in \mathscr{F}} \mathbf{w}_f(\mathbf{y})^T f(\mathbf{b}) & \mathbf{b} \iff \{b_r(\mathbf{x}_r)\}, \forall r, \mathbf{x}_r \\ & \mathbf{w}_f(\mathbf{y}) \iff w_f(\mathbf{x}_r, \mathbf{y}_r), \forall r, \mathbf{x}_r \\ & \mathbf{b} \ge \mathbf{0}. \end{split}$$

Approach 000 000000 000000 Experiments

Discussion 000 0000000000

Outline

Introduction

Motivation Overview of the approach

Approach

Inference Learning (Loss functions)

Experiments

Introduction Results

Discussion

Summary

Learning

• Given $\{(\hat{\mathbf{x}}, \hat{\mathbf{y}})\} \sim p(\mathbf{x}, \mathbf{y})$, how to quantify the quality of predicted marginals?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Many possibilities. Two suggestions:
 - Log-loss
 - Quad-loss

Discussion 000 0000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Log-loss

• Try to minimize "expected average univariate KL-divergence".

$$F^* = \arg\min_{F} \sum_{\mathbf{y}} p(\mathbf{y}) \sum_{i} \sum_{x_i} p(x_i | \mathbf{y}) \log \frac{p(x_i | \mathbf{y})}{b_i^*(x_i | \mathbf{y}, F)}.$$

= $\arg\min_{F} - \sum_{\mathbf{y}} p(\mathbf{y}) \sum_{i} \sum_{x_i} p(x_i | \mathbf{y}) \log b_i^*(x_i | \mathbf{y}, F)$
= $\arg\min_{F} - \sum_{\mathbf{y}} \sum_{i} \sum_{x_i} p(x_i, \mathbf{y}) \log b_i^*(x_i | \mathbf{y}, F)$
 $\approx \arg\min_{F} \sum_{\{(\hat{\mathbf{x}}, \hat{\mathbf{y}})\}} \underbrace{-\sum_{i} \log b_i^*(\hat{x}_i | \hat{\mathbf{y}}, F)}_{L_{\log}}$

Log-loss

• Try to minimize "expected average univariate KL-divergence".

$$L_{\log} = -\sum_{i} \log b_{i}^{*}(\hat{x}_{i}|\hat{\mathbf{y}}, F)$$
$$\frac{\partial L_{\log}}{\partial \theta_{j}} = -\sum_{i} \frac{\partial b_{i}^{*}(\hat{x}_{i}|\hat{\mathbf{y}}, F) / \partial \theta_{j}}{b_{i}^{*}(\hat{x}_{i}|\hat{\mathbf{y}}, F)}$$

(See also Kakade et al. "An Alternate Objective Function for Markovian Fields")

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Experiments

Discussion 000 0000000000

▲□▶ ▲録▶ ▲臣▶ ★臣▶ ―臣 …の�?

Quad-loss

• Try to minimize "expected average univariate quadratic difference".

$$F^* = \arg\min_{F} \sum_{\mathbf{y}} p(\mathbf{y}) \sum_{i} \sum_{x_i} (p(x_i|\mathbf{y}) - b_i^*(x_i|\mathbf{y}, F))^2$$

=
$$\arg\min_{F} \sum_{\mathbf{y}} \sum_{i} \sum_{x_i} (-2p(x_i, \mathbf{y})b_i^*(x_i|\mathbf{y}, F) + p(\mathbf{y})b_i^*(x_i|\mathbf{y}, F)^2)$$

$$\approx \arg\min_{F} \sum_{\{(\hat{\mathbf{x}}, \hat{\mathbf{y}})\}} \underbrace{\sum_{i} (-2b_i^*(\hat{x}_i|\hat{\mathbf{y}}, F) + \sum_{x_i} b_i^*(x_i|\hat{\mathbf{y}}, F)^2)}_{L_{guad}}$$

Approach 000 0000000 000000 Experiments

Discussion 000 000000000

Quad-loss

• Try to minimize "expected average univariate quadratic difference".

$$L_{quad} = \sum_{i} \left(-2b_{i}^{*}(\hat{x}_{i}|\hat{y}, F) + \sum_{x_{i}} b_{i}^{*}(x_{i}|\hat{y}, F)^{2} \right)$$

$$\frac{\partial L_{quad}}{\partial \theta_j} = 2\sum_i \left(-\frac{\partial b_i^*(\hat{x}_i|\hat{\mathbf{y}},F)}{\partial \theta_j} + \sum_{x_i} b_i^*(x_i|\hat{\mathbf{y}},F) \frac{\partial b_i^*(x_i|\hat{\mathbf{y}},F)}{\partial \theta_j} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Approach 000 000000 000000 Experiments 0000 000 Discussion 000 0000000000

Recap

$$\frac{\partial L_{\mathsf{log}}}{\partial \theta_j} = -\sum_i \frac{\partial b_i^*(\hat{x}_i | \hat{\mathbf{y}}, F) / \partial \theta_j}{b_i^*(\hat{x}_i | \hat{\mathbf{y}}, F)}$$

$$\frac{\partial L_{quad}}{\partial \theta_j} = 2\sum_i \left(-\frac{\partial b_i^*(\hat{x}_i|\hat{\mathbf{y}}, F)}{\partial \theta_j} + \sum_{x_i} b_i^*(x_i|\hat{\mathbf{y}}, F) \frac{\partial b_i^*(x_i|\hat{\mathbf{y}}, F)}{\partial \theta_j}\right)$$

If we could calculate $\frac{\partial b_i^*(\hat{\mathbf{x}}_i|\hat{\mathbf{y}},F)}{\partial \theta_j}$, we could optimize $L_{\{\log, quad\}}$. However, recall that $b_i^*(\hat{\mathbf{x}}_i|\hat{\mathbf{y}},F)$ is <u>implicit</u>.

$$\mathbf{b}^* = \arg\min_{\mathbf{b}} \sum_{f \in \mathscr{F}} \mathbf{w}_f(\mathbf{y})^T f(\mathbf{b})$$

such that $A\mathbf{b} = \mathbf{d}$
 $\mathbf{b} \ge \mathbf{0}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Approach ○○○ ○○○○○○● Experiments 0000 000 Discussion 000 0000000000

Recap

$$\frac{\partial L_{\log}}{\partial \theta_j} = -\sum_i \frac{\partial b_i^*(\hat{x}_i | \hat{\mathbf{y}}, F) / \partial \theta_j}{b_i^*(\hat{x}_i | \hat{\mathbf{y}}, F)}$$

$$\frac{\partial L_{\mathsf{quad}}}{\partial \theta_j} = 2\sum_i \big(-\frac{\partial b_i^*(\hat{x}_i|\hat{\mathbf{y}}, F)}{\partial \theta_j} + \sum_{x_i} b_i^*(x_i|\hat{\mathbf{y}}, F) \frac{\partial b_i^*(x_i|\hat{\mathbf{y}}, F)}{\partial \theta_j} \big)$$

If we could calculate $\frac{\partial b_i^*(\hat{x}_i|\hat{y},F)}{\partial \theta_j}$, we could optimize $L_{\{\log, quad\}}$. However, recall that $b_i^*(\hat{x}_i|\hat{y},F)$ is <u>implicit</u>.

$$\mathbf{b}^* = \arg\min_{\mathbf{b}} \sum_{f \in \mathscr{F}} \mathbf{w}_f(\mathbf{y})^T f(\mathbf{b})$$

such that $A\mathbf{b} = \mathbf{d}$
 $\mathbf{b} \ge \mathbf{0}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで
Approach 000 000000 000000 Experiments 0000 000 Discussion 000 0000000000

Recap

$$\frac{\partial L_{\log}}{\partial \theta_j} = -\sum_i \frac{\partial b_i^*(\hat{x}_i | \hat{\mathbf{y}}, F) / \partial \theta_j}{b_i^*(\hat{x}_i | \hat{\mathbf{y}}, F)}$$

$$\frac{\partial L_{\mathsf{quad}}}{\partial \theta_j} = 2\sum_i \big(-\frac{\partial b_i^*(\hat{x}_i|\hat{\mathbf{y}}, F)}{\partial \theta_j} + \sum_{x_i} b_i^*(x_i|\hat{\mathbf{y}}, F) \frac{\partial b_i^*(x_i|\hat{\mathbf{y}}, F)}{\partial \theta_j} \big)$$

If we could calculate $\frac{\partial b_i^*(\hat{x}_i|\hat{\mathbf{y}},F)}{\partial \theta_j}$, we could optimize $L_{\{\log,quad\}}$. However, recall that $b_i^*(\hat{x}_i|\hat{\mathbf{y}},F)$ is <u>implicit</u>.

$$egin{array}{lll} \mathbf{b}^* = rg\min_{\mathbf{b}} \sum_{f \in \mathscr{F}} \mathbf{w}_f(\mathbf{y})^{\mathcal{T}} f(\mathbf{b}) \ ext{such that} & A\mathbf{b} = \mathbf{d} \ extbf{b} \geq \mathbf{0}. \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Approach 000 000000 000000 Experiments 0000 000

Recap

$$\frac{\partial L_{\log}}{\partial \theta_j} = -\sum_i \frac{\partial b_i^*(\hat{x}_i | \hat{\mathbf{y}}, F) / \partial \theta_j}{b_i^*(\hat{x}_i | \hat{\mathbf{y}}, F)}$$

$$\frac{\partial L_{quad}}{\partial \theta_j} = 2\sum_i \big(-\frac{\partial b_i^*(\hat{x}_i|\hat{\mathbf{y}}, F)}{\partial \theta_j} + \sum_{x_i} b_i^*(x_i|\hat{\mathbf{y}}, F) \frac{\partial b_i^*(x_i|\hat{\mathbf{y}}, F)}{\partial \theta_j} \big)$$

If we could calculate $\frac{\partial b_i^*(\hat{x}_i|\hat{\mathbf{y}},F)}{\partial \theta_j}$, we could optimize $L_{\{\log, quad\}}$. However, recall that $b_i^*(\hat{x}_i|\hat{\mathbf{y}},F)$ is <u>implicit</u>.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Approach

Experiments

Discussion 000 0000000000

Outline

Introduction

Motivation Overview of the approach

Approach

Inference Learning (Loss functions) Learning (Derivatives of beliefs)

Experiments

Introduction Results

Discussion

Approach

Experiments

Discussion 000 0000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Claim 1

Claim 1: Let $F(\mathbf{b}, \theta)$ be a continuous function such that for all θ , F that has a unique stationary point in **b**.Define $\mathbf{b}^*(\theta)$ such that $\frac{\partial F(\mathbf{b}^*(\theta), \theta)}{\partial \mathbf{b}} = \mathbf{0}$.Then,

$$\frac{\partial \mathbf{b}^*(\theta)}{\partial \theta_j} = -\left(\frac{\partial^2 F(\mathbf{b}^*(\theta), \theta)}{\partial \mathbf{b} \partial \mathbf{b}^T}\right)^{-1} \frac{\partial^2 F(\mathbf{b}^*(\theta), \theta)}{\partial \mathbf{b} \partial \theta_j}.$$

Proof: (Implicit Function Theorem.)

Approach

Experiments

Discussion 000 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Claim 1

Claim 1: Let $F(\mathbf{b}, \theta)$ be a continuous function such that for all θ , F that has a unique stationary point in **b**.Define $\mathbf{b}^*(\theta)$ such that $\frac{\partial F(\mathbf{b}^*(\theta), \theta)}{\partial \mathbf{b}} = \mathbf{0}$.Then,

$$\frac{\partial \mathbf{b}^*(\theta)}{\partial \theta_j} = -\left(\frac{\partial^2 F(\mathbf{b}^*(\theta), \theta)}{\partial \mathbf{b} \partial \mathbf{b}^T}\right)^{-1} \frac{\partial^2 F(\mathbf{b}^*(\theta), \theta)}{\partial \mathbf{b} \partial \theta_j}$$

• Not good enough, since F is minimized under constraints.

Approach

Experiments

Discussion 000 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の��

Claim 2

Claim 2: Define $\mathbf{b}^*(\theta) \doteq \operatorname{argmin}_{\mathbf{b}} F(\mathbf{b}, \theta)$, such that $A\mathbf{b} = d$ for some convex function F. Then,

$$\frac{\partial \mathbf{b}^*(\theta)}{\partial \theta_j} = (D^{-1}A^T (AD^{-1}A^T)^{-1}AD^{-1} - D^{-1})\frac{\partial^2 F}{\partial \mathbf{b} \partial \theta_j}, \ D = (\frac{\partial^2 F}{\partial \mathbf{b} \partial \mathbf{b}^T}).$$

Proof: (Make a Lagrangian, apply claim 1, do algebra.)

Experiments 0000 000 Discussion 000 0000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Claim 2

Claim 2: Define $\mathbf{b}^*(\theta) \doteq \operatorname{argmin}_{\mathbf{b}} F(\mathbf{b}, \theta)$, such that $A\mathbf{b} = d$ for some convex function F. Then,

$$\frac{\partial \mathbf{b}^*(\theta)}{\partial \theta_j} = (D^{-1}A^T (AD^{-1}A^T)^{-1}AD^{-1} - D^{-1})\frac{\partial^2 F}{\partial \mathbf{b} \partial \theta_j}, \ D = (\frac{\partial^2 F}{\partial \mathbf{b} \partial \mathbf{b}^T}).$$

In our case,

$$D = \operatorname{diag}(\sum_{f} \mathbf{w}_{f}(\mathbf{y}) \odot f''(\mathbf{b}))$$

$$\frac{\partial^{2} F}{\partial \mathbf{b} \partial \theta_{j}} = \sum_{f} \frac{\partial \mathbf{w}_{f}(\mathbf{y})}{\partial \theta_{j}} \odot f'$$

We still need $\frac{\partial \mathbf{w}_f(\mathbf{y})}{\partial \theta_i}$.

Experiments

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Claim 2

Claim 2: Define $\mathbf{b}^*(\theta) \doteq \operatorname{argmin}_{\mathbf{b}} F(\mathbf{b}, \theta)$, such that $A\mathbf{b} = d$ for some convex function F. Then,

$$\frac{\partial \mathbf{b}^*(\theta)}{\partial \theta_j} = (D^{-1}A^T (AD^{-1}A^T)^{-1}AD^{-1} - D^{-1})\frac{\partial^2 F}{\partial \mathbf{b} \partial \theta_j}, \ D = (\frac{\partial^2 F}{\partial \mathbf{b} \partial \mathbf{b}^T}).$$

In our case, $D = \operatorname{diag}(\sum_{f} \mathbf{w}_{f}(\mathbf{y}) \odot f''(\mathbf{b}))$ $\frac{\partial^{2} F}{\partial \mathbf{b} \partial \theta_{j}} = \sum_{f} \frac{\partial \mathbf{w}_{f}(\mathbf{y})}{\partial \theta_{j}} \odot f'$

We still need $\frac{\partial \mathbf{w}_f(\mathbf{y})}{\partial \theta_j}$.

Experiments 0000 000

Derivatives of beliefs- the bottom line

- Want to calculate $\frac{\partial L}{\partial \theta_i}$. Procedure:
 - 1. Run some optimization

$$\begin{split} \mathbf{b}^* &= \arg\min_{\mathbf{b}} \sum_{f \in \mathscr{F}} \mathbf{w}_f(\mathbf{y})^T f(\mathbf{b}) \\ \text{such that} \qquad A\mathbf{b} &= \mathbf{d} \\ \mathbf{b} &\geq \mathbf{0}. \end{split}$$

2. Solve the linear system given by Claim 2 to get $\frac{\partial L}{\partial \theta_i}$.

- When learning, <u>two</u> optimizations:
 - 1. "inner" optimization (over $\{b_r\}$)
 - 2. "outer" optimization (over θ)

Experiments 0000 000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Derivatives of beliefs- the bottom line

- Want to calculate $\frac{\partial L}{\partial \theta_i}$. Procedure:
 - 1. Run some optimization

$$\begin{split} \mathbf{b}^* &= \arg\min_{\mathbf{b}} \sum_{f \in \mathscr{F}} \mathbf{w}_f(\mathbf{y})^T f(\mathbf{b}) \\ \text{such that} \qquad & A\mathbf{b} = \mathbf{d} \\ & \mathbf{b} \geq \mathbf{0}. \end{split}$$

2. Solve the linear system given by Claim 2 to get $\frac{\partial L}{\partial \theta_i}$.

- When learning, <u>two</u> optimizations:
 - 1. "inner" optimization (over $\{b_r\}$)
 - 2. "outer" optimization (over θ)

Experiments 0000 000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Derivatives of beliefs- the bottom line

- Want to calculate $\frac{\partial L}{\partial \theta_i}$. Procedure:
 - 1. Run some optimization

$$\begin{split} \mathbf{b}^* &= \arg\min_{\mathbf{b}} \sum_{f \in \mathscr{F}} \mathbf{w}_f(\mathbf{y})^T f(\mathbf{b}) \\ \text{such that} \qquad & A\mathbf{b} = \mathbf{d} \\ & \mathbf{b} \geq \mathbf{0}. \end{split}$$

2. Solve the linear system given by Claim 2 to get $\frac{\partial L}{\partial \theta_i}$.

- When learning, <u>two</u> optimizations:
 - 1. "inner" optimization (over $\{b_r\}$)
 - 2. "outer" optimization (over θ)

Approach 000 0000000 000000 Experiments

(日) (四) (三) (三) (三)

Discussion 000 0000000000

Outline

Introduction

Motivation Overview of the approach

Approach

Inference Learning (Loss functions) Learning (Derivatives of beliefs)

Experiments

Introduction

Results

Discussion

Experiments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Problem

- "Denoising" of 10 binary images of each class (1-9) from the MNIST database.
 - **y** is the observed, noisy image

• x is the unobserved, clean image

Approach 000 0000000 000000 Experiments

- Use regions consisting of individual variables, and neighboring pairs.
- Total of 40 parameters. (Somewhat redundant)
 - $w_b(\mathbf{x}_c, \mathbf{y}_c)$ (initialize to 0)
 - $w_b(\mathbf{x}_i, \mathbf{y}_i)$ (initialize to 0)
 - $w_{b \log b}(\mathbf{x}_c, \mathbf{y}_c)$ (initialize to 1)
 - $w_{b \log b}(\mathbf{x}_i, \mathbf{y}_i)$ (initialize to 1)
- "Inner loop" optimization uses PDCO interior method.
 - Tolerances very strict.
- "Outer loop" optimization uses Matlab's BFGS.

Experiments

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Use regions consisting of individual variables, and neighboring pairs.
- Total of 40 parameters. (Somewhat redundant)
 - $w_b(\mathbf{x}_c, \mathbf{y}_c)$ (initialize to 0)
 - $w_b(\mathbf{x}_i, \mathbf{y}_i)$ (initialize to 0)
 - $w_{b \log b}(\mathbf{x}_c, \mathbf{y}_c)$ (initialize to 1)
 - $w_{b \log b}(\mathbf{x}_i, \mathbf{y}_i)$ (initialize to 1)
- "Inner loop" optimization uses PDCO interior method.
 - Tolerances very strict.
- "Outer loop" optimization uses Matlab's BFGS.

Experiments

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Use regions consisting of individual variables, and neighboring pairs.
- Total of 40 parameters. (Somewhat redundant)
 - $w_b(\mathbf{x}_c, \mathbf{y}_c)$ (initialize to 0)
 - $w_b(\mathbf{x}_i, \mathbf{y}_i)$ (initialize to 0)
 - $w_{b \log b}(\mathbf{x}_c, \mathbf{y}_c)$ (initialize to 1)
 - $w_{b \log b}(\mathbf{x}_i, \mathbf{y}_i)$ (initialize to 1)
- "Inner loop" optimization uses PDCO interior method.
 - Tolerances very strict.
- "Outer loop" optimization uses Matlab's BFGS.

Experiments

Discussion 000 0000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Use regions consisting of individual variables, and neighboring pairs.
- Total of 40 parameters. (Somewhat redundant)
 - $w_b(\mathbf{x}_c, \mathbf{y}_c)$ (initialize to 0)
 - $w_b(\mathbf{x}_i, \mathbf{y}_i)$ (initialize to 0)
 - $w_{b \log b}(\mathbf{x}_c, \mathbf{y}_c)$ (initialize to 1)
 - $w_{b \log b}(\mathbf{x}_i, \mathbf{y}_i)$ (initialize to 1)
- "Inner loop" optimization uses PDCO interior method.
 - Tolerances very strict.
- "Outer loop" optimization uses Matlab's BFGS.

Approach 000 0000000 000000 Experiments

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Comparison

- Compare to CRF toolbox.
 - Vishwanathan et al., ICML 2006
 - www.cs.ubc.ca/~murphyk/Software/CRF/crf.html
- Inference: mean-field or (loopy) belief propagation.
- Learning: Pseudolikelihood, or surrogate to likelihood where inference algorithm is used to approximate marginals defining the gradient.
- Features are constant + indicator for each possible configuration of each variable/pair.

Approach 000 0000000 000000 Experiments

Discussion 000 0000000000

Outline

Introduction

Motivation Overview of the approac

Approach

Inference Learning (Loss functions) Learning (Derivatives of beliefs)

Experiments

Introduction

Results

Discussion

Approach 000 0000000 000000 Experiments

Discussion 000 000000000

50% noise

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三回 - のQで

Approach 000 0000000 0000000 Experiments

Discussion 000 0000000000

50% noise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Approach 000 0000000 000000 Experiments

Discussion

Outline

Introduction

Motivation Overview of the approach

Approach

Inference Learning (Loss functions) Learning (Derivatives of beliefs)

Experiments

Introduction Results

Discussion Summary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のQQ

Approach 000 0000000 0000000 Experiments

<ロ> (四) (四) (三) (三) (三)

Discussion 000

- Common to fit classifiers by minimizing a loss close to classification error.
- Graphical models, however, usually use a score (the likelihood) that is both
 - Difficult to optimize.
 - Remote from empirical risk.
- This paper presents an approach for "fitting a free energy" to directly give good marginals.

Approach 000 0000000 0000000 Experiments

Discussion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Common to fit classifiers by minimizing a loss close to classification error.
- Graphical models, however, usually use a score (the likelihood) that is both
 - Difficult to optimize.
 - Remote from empirical risk.
- This paper presents an approach for "fitting a free energy" to directly give good marginals.

Approach 000 0000000 000000 Experiments

Discussion 000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Common to fit classifiers by minimizing a loss close to classification error.
- Graphical models, however, usually use a score (the likelihood) that is both
 - Difficult to optimize.
 - Remote from empirical risk.
- This paper presents an approach for "fitting a free energy" to directly give good marginals.

Approach 000 0000000 000000 Experiments

Discussion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

The End

Thank you.

- 1. Different loss functions.
- 2. Better entropy term.
- 3. Exploit hidden variables.
- 4. Better relaxation of marginal polytope.
- 5. Better "inner loop" optimization.
- 6. Better F.

Approach 000 0000000 000000 Experiments

Discussion

Outline

Introduction

Motivation Overview of the approach

Approach

Inference Learning (Loss functions) Learning (Derivatives of beliefs)

Experiments

Introduction Results

Discussion

Summary

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Approach 000 0000000 000000 Experiments

Discussion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Future Work

- 1. Different loss functions.
 - For example, common to find $\operatorname{argmax}_{x_i} b^*(x_i | \mathbf{y})$.
 - Could use a loss function (approximating) the univariate classification error.

(Gross et al. "Training CRFs for maximum labelwise accuracy", NIPS 2006)

Approach 000 0000000 000000 Exp eriments

Discussion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Future Work

- 2. More flexible entropy term.
 - As described, this approach requires fixing $w_{b\log b} > 0$ to guarantee convexity.
 - However, negative entropy terms can be allowed while preserving convexity over the locally consistent marginals.
 - Easiest approach- just pick a better (fixed) entropy approximation.

(Heskes, "Convexity Arguments for Efficient Minimization of the Bethe and Kikuchi Free Energies", JAIR 2006)

Approach 000 0000000 0000000 Experiments 0000 000 Discussion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Entropy

 $w_{b\log b}(\mathbf{x}_c, \mathbf{y}_c)$ and $w_{b\log b}(x_i, y_i)$ for L_{quad} with 50% noise

$\mathbf{x}_c \setminus \mathbf{y}_c$	(0,0)	(0,1)	(1,0)	(1,1)			
(0,0)	4.86	0.04	0.05	0.02	$x_i \setminus y_i$	0	1
(0,1)	4.22	3.86	4.54	5.00	0	4.47	0.02
(1,0)	4.13	4.49	2.14	5.13	1	0.03	0.03
(1,1)	0.06	0.02	0.03	0.02			

Approach 000 0000000 000000 Exp eriments

Discussion

◆ロト ◆得ト ◆ヨト ◆ヨト ヨー のくべ

- 3. Hidden variables.
 - The same algorithm can be used with hidden variables, by taking the sum over the variables in L_{log,quad} over the observed variables.

Experiments 0000 000 Discussion

◆ロト ◆得ト ◆ヨト ◆ヨト ヨー のくべ

- 4. Better relaxation of the marginal polytope.
 - Currently, the model must try to compensate during the learning stage for defects in the marginal polytope.

Approach 000 0000000 000000 Experiments 0000 000 Discussion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- 5. Better "inner loop" optimization.
 - Generic optimization is OK for 28x28 images.
 - Derive a message passing algorithm?

Approach 000 0000000 000000 Exp eriments

Discussion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- 6. More general function F.
 - Any function $F(\mathbf{y}, \{b_r(\mathbf{x}_r)\})$ can give an implicit mapping.
 - As long as it is convex and continuous, learning should be doable by implicit differentiation.
 - A larger set \mathscr{F} than $\{b, b \log b\}$?
 - Some F based on different principles?

Approach 000 0000000 000000 Experiments 0000 000 Discussion

30% noise

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三回 - のQで

Approach 000 0000000 0000000 Experiments 0000 000 Discussion

30% noise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで