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e True (unknown) distribution p(x,y)

e Given y, want to predict p(x;|y)

« We have only {(%,9)} ~ p(x.y).
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Setting

e True (unknown) distribution p(x,y)
Maximum Likelihood Approach:

1. Fit a graphical model g(x]y) by max (conditional) likelihood.
(Learning)

2. Given y, compute g(xjly). (Inference)

Justification: Given a correct model, g(x|y) — p(x|y).
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Problems with Max Likelihood

e In many cases, this works well.

e Problems arise, particularly when the model has high treewidth.

e Computational Intractability
o Model Defects
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Problems with Max Likelihood

1. Computational Intractability.

e Often, max likelihood can’t be done.

e Even if it could, would the results be what we want under
approximate inference?
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Problems with Max Likelihood

2. Model Defects
e Possible to set 8 such that g(x|y; 8) = p(x|y)?

e Max conditional likelihood ~ E[KL-divergence]

p(xly)
0)

ly;
—argmm—Zp y)zp x|y)log q(x|y; 8)

argmin Z p(y) Z p(x|y)log a(x

~arg max Z log g(X|y; 6)
{x9)}
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Problems with Max Likelihood

2. Model Defects
e Possible to set 8 such that g(x|y; 8) = p(x|y)?

e Max conditional likelihood ~ E[KL-divergence]
: p(xly)
argmin ) p p(x|y)log —————
gmi Z (Y)Z (xy)log o gy
=argm9in—ZP(Y)ZP(XIY)'O%CJ(XIY:G)
~arg max Z log g(X|y; 6)
{xy)}
e min KL-divergence # best marginals.

e (Even assuming exact inference.)
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Overview

Goal: Sidestep problems of intractability and model defects.

In approximate inference, g(x|y) is often used to create a free
energy function.

Flybr(x)}) - {br(xr)} = argmin Fly, {br(x-)})

Idea: Think of F as mapping from y to {b}(x,)}. Directly fit
F to make the mapping as accurate as possible.

Computational Tractability: Restrict F to be convex.

Model Defects: Learn by minimizing empirical risk, where risk
measures the accuracy of marginals.
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Inference

ij wr(xr,Yr)f (br(xr))

feZre

o Typically, .# = {b,blogb}. Anything convex over (0,1) is OK.
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feZ re

o Typically, .# = {b,blogb}. Anything convex over (0,1) is OK.

{br(x)} = argmin F{y, {br(x)})
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Inference

Z]ZWf xr,Yr)f (br(xr))

feF re

o Typically, .# = {b,blogb}. Anything convex over (0,1) is OK.

{br(x)} = argmin F{y, {br(x)})

e Minimization is over some relaxation of the marginal polytope

local consistency: 2 be(xc) = bi(x;)
Xe\i

Ebc(xc)zl Zb,'(x,')zl

be(xc) >0 bi(x;) >0
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such that (local consistency)
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{br(xr)} = argr{'nin Z Z Z wr (xr,yr)f (br(xr))

r} fEF re# X,

such that (local consistency)

Equivalent, more convenient formulation:

b* = argmbin z we(y)Tf(b)

fes
such that Ab=d
b>0.
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Inference

{br(xr)} = argr{'nin Z Z Z wr (xr,yr)f (br(xr))

) FET rem %

such that (local consistency)

Equivalent, more convenient formulation:

b* :argmbin z we(y)T f(b) b « {b/(x/)},Vr,x

fez we(y) < wr(Xeyr),Vr,x,
such that Ab=d

b>0.
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Learning

e Given {(%,9¥)} ~ p(x,y), how to quantify the quality of
predicted marginals?

e Many possibilities. Two suggestions:

e Log-loss
e Quad-loss
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Log-loss

e Try to minimize “expected average univariate KL-divergence”.

F* —argmanp Y)Z Zp xily)log b*(( i‘)’) 5

:arngln—Zp ZZP xi|y)log b; (xily, F)
y T X
:arngin—ZZ;P(Xi,Y)logb?(Xi|yaF)

Nargmln Z Zlogb;‘(qu,F)
1

(3}

Llog
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Log-loss

e Try to minimize “expected average univariate KL-divergence”.

Llog = Zlogbf()?,h?,F)
z ,F)/06;

(39
19.F)

0Llog

(

(See also Kakade et al. “An Alternate Objective Function for Markovian Fields”)
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Quad-loss

e Try to minimize “expected average univariate quadratic
difference”.

F* _argmanp y)zz p(xily) — b (xily, F))?
1 X
_argmlnzz

(—2p(xi,y)b} (xily: F) + p(y) b} (xily, F)?)
Nargmln z (-2

b (515 F)+ 3 b9 )
{(xy)} !

Lquad
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Quad-loss

e Try to minimize “expected average univariate quadratic
difference”.
Lquad = Y (—2b; (%19, F) + Y b;(xil§,F)?)
Xi

]

ﬁLquad ob¥( x,|y,F) obi(xily,F)

= Z +zbi(xi|9a,:)1076j)

1 X




Recap
aLIog - 0bf(>“<,|9,F)/aej
76 ~ 2 b(uly.F)
qu“ad = 9bi( X,|y, F) e o OB (xi9, F)
=22 + 3 Biul9. Y5
If we could calculate 22L515-F)

06,

, we could optimize Ljog quad}
J
However, recall that b} (%;|y, F) isimplici

b* = argmin Wf(y)Tf(b)

Ab=d
b>0.

feF
such that
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Recap
(9L|0g ob:( X,|y,F)/(39
B Z b* Xl|y7
quuad 0b XI|Y>F) db)'k(xi|9>F)

=23 (- +Zbi(xi|9’F)ldT)

1 X



Approach

000000

Recap

(9L|og 3 ob:( x,|y,F)/ae
b* Xl|y7
quuad 0b XI|Y>F) s db)'k(xi|9>F)
= + bi (Xi|y7F) :
22 2 % )

9b; (%i1§.F)

If we could calculate '(T, we could optimize Lyjoq quad}-
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Recap

(9L|og _ Z ob:( x,|y,F)/(36
b* Xl|y7
quuad 0b XI|Y>F) s db)'k(xi|9>F)
= + bi (Xi|y7 F) :
22 2 % )
If we could calculate w, we could optimize Lyjoq quad}-

J
However, recall that b} (%;|y, F) isimplicit.

b* =argmin § we(y)” f(b)
b fezﬁ
such that Ab=d

b>0.
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Claim 1

Claim 1: Let F(b,0) be a continuous function such that for all 6,
F that has a unique stationary point in b.Define b*(0) such that
OB (©0) " Then,

ab*(8)  /9%F(b*(6),6)\ 1 02F(b*(6),0)
a06; __( dbabT ) oboo;,

Proof: (Implicit Function Theorem.)



Approach

00e000

Claim 1

Claim 1: Let F(b,0) be a continuous function such that for all 6,
F that has a unique stationary point in b.Define b*(0) such that
7‘9’:([’;?)’9) = 0.Then,

ab*(0)  (0%F(b*(6),0)\-19%F(b*(6),0)
26 __( dbobT ) dbdg;

e Not good enough, since F is minimized under constraints.
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Claim 2

Claim 2: Define b*(6)=argminy, F(b,8), such that Ab =d for
some convex function F. Then,

ab*(6)
26

9°F —( 9°F )
0bog;" = ‘dbobT”

=(DAT(AD AT 1AD1-D )

Proof: (Make a Lagrangian, apply claim 1, do algebra.)
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Claim 2

Claim 2: Define b*(8)=argminy, F(b, ), such that Ab
some convex function F. Then,

b (0) T an1aT\ 141 o1y O°F
76 =(D'AT(ADTAT)TADT - D )aba@'
In our case, D= diag(ZWf(Y) ©f"(b))

sz . an(

Y) g
abag, 2 ag '

=d for

., 0°F
= (GbabT)
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Claim 2

Claim 2: Define b*(8)=argminy, F(b, ), such that Ab
some convex function F. Then,

0b*(0) 1 T a1 aT\-1 a1 -1 0?F
76 = (D 'AT(AD AT 'AD - D )aba@'
In our case, D= diag(ZWf(Y) ©f"(b))
sz _ an(y) @ f'/
9ba6; 96,

. ows(y)
We still need a0,

=d for

., 0°F
= (GbabT)
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Derivatives of beliefs- the bottom line

e Want to calculate %. Procedure:
]

1. Run some optimization

b* = argmin Z wr(y) " f(b)
b ez
such that Ab=d

b>0.

2. Solve the linear system given by Claim 2 to get %.
J
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Derivatives of beliefs- the bottom line

e Want to calculate %. Procedure:
]

1. Run some optimization

b* = argmin Z wr(y) " f(b)
b ez

such that Ab=d
b>0.

2. Solve the linear system given by Claim 2 to get %.
J

e When learning, two optimizations:

1. “inner” optimization (over {b,})
2. "outer” optimization (over 6)
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Problem

e “Denoising” of 10 binary images of each class (1-9) from the
MNIST database.

e y is the observed, noisy image

e x is the unobserved, clean image
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Setup

Use regions consisting of individual variables, and neighboring
pairs.

Total of 40 parameters. (Somewhat redundant)

wp(Xc,Yc) (initialize to 0)
wp(xi,yi) (initialize to 0)
Whlog b(Xc,Yc) (initialize to 1)
Whlog b(Xi,yi) (initialize to 1)

“Inner loop” optimization uses PDCO interior method.

e Tolerances very strict.

“Outer loop” optimization uses Matlab’s BFGS.
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Comparison

Compare to CRF toolbox.

e Vishwanathan et al., ICML 2006

® www.cs.ubc.ca/ “murphyk/Software/CRF/crf.html
Inference: mean-field or (loopy) belief propagation.
Learning: Pseudolikelihood, or surrogate to likelihood where
inference algorithm is used to approximate marginals defining
the gradient.

Features are constant + indicator for each possible
configuration of each variable/pair.
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50% noise

Classification Error

Regression Error

0 0.02 0.04 0.06 0.08

L|og Loss

0.1

0.04 0.06 0.08 0.1

Lo yad Loss

qua

Il Pseudo+M.F.
Il Pseudo+B.P.
[IMean Field
[ Belief Prop.

S
o
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classification error.
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e Common to fit classifiers by minimizing a loss close to
classification error.

e Graphical models, however, usually use a score (the likelihood)
that is both

e Difficult to optimize.
e Remote from empirical risk.
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Summary

e Common to fit classifiers by minimizing a loss close to
classification error.

e Graphical models, however, usually use a score (the likelihood)
that is both

e Difficult to optimize.
e Remote from empirical risk.

e This paper presents an approach for “fitting a free energy” to
directly give good marginals.



Introduction Approach Experiments

000000 [e]e]e] 0000

[e]e] 0000000 000
000000

The End

Thank you.

Future Work:

1. Different loss functions.

Better entropy term.

Exploit hidden variables.

Better relaxation of marginal polytope.
Better “inner loop” optimization.
Better F.

e wN
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Future Work

1. Different loss functions.

e For example, common to find arg max,, b*(xi|y).

e Could use a loss function (approximating) the univariate
classification error.

(Gross et al. “Training CRFs for maximum labelwise accuracy”, NIPS 2006)
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Future Work

2. More flexible entropy term.
e As described, this approach requires fixing wpjogp > 0 to
guarantee convexity.

e However, negative entropy terms can be allowed while
preserving convexity over the locally consistent marginals.

e Easiest approach- just pick a better (fixed) entropy
approximation.

(Heskes, “Convexity Arguments for Efficient Minimization of the Bethe and
Kikuchi Free Energies”, JAIR 2006)



Entropy

Whlog b(Xc,¥c) and Wpiogb(Xi,yi) for Lguad with 50% noise

xc\ye | (00) (01) (1,0) (11)

(0.0) | 486 004 005 002 |[x\yi] 0 1
(0.1) | 422 386 454 500 | 0 |447 002
(1,0) | 413 449 214 513 | 1 |0.03 003
(1,1) | 0.06 0.02 003 0.02

Discussion
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Future Work

3. Hidden variables.

e The same algorithm can be used with hidden variables, by
taking the sum over the variables in Lyjoq quad) Over the
observed variables.
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Future Work

4. Better relaxation of the marginal polytope.

e Currently, the model must try to compensate during the
learning stage for defects in the marginal polytope.
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Future Work

5. Better “inner loop” optimization.

e Generic optimization is OK for 28x28 images.

e Derive a message passing algorithm?

Discussion

000
000000@00C
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Future Work

6. More general function F.

e Any function F(y,{b,(x,)}) can give an implicit mapping.

e As long as it is convex and continuous, learning should be
doable by implicit differentiation.

e A larger set .% than {b,blogb}?

e Some F based on different principles?
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