
Introduction Approach Experiments Discussion
Learning (Convex Inference of Marginals)Justin DomkeUniversity of Maryland



Introduction Approach Experiments DiscussionOutlineIntroductionMotivationOverview of the approachApproachInferenceLearning (Loss functions)Learning (Derivatives of beliefs)ExperimentsIntroductionResultsDiscussionSummary.



Introduction Approach Experiments DiscussionOutlineIntroductionMotivationOverview of the approachApproachInferenceLearning (Loss functions)Learning (Derivatives of beliefs)ExperimentsIntroductionResultsDiscussionSummary.



Introduction Approach Experiments DiscussionSettingy x
• True (unknown) distribution p(x,y)
• Given y, want to predict p(xi |y)
• We have only {(x̂, ŷ)} ∼ p(x,y).
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• Possible to set θ such that q(x|y;θ ) = p(x|y)?
• Max conditional likelihood ≈ E[KL-divergence]argmin

θ ∑y p(y)∑x p(x|y) log p(x|y)q(x|y;θ )

=argmin
θ

−∑y p(y)∑x p(x|y) logq(x|y;θ )

≈argmax
θ ∑

{(x̂,ŷ)} logq(x̂|ŷ;θ )

• min KL-divergence 6= best marginals.
• (Even assuming exact inference.)
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• Goal: Sidestep problems of intractability and model defects.
• In approximate inference, q(x|y) is often used to create a freeenergy function.F (y,{br (xr )}) {b∗r (xr )} = argmin

{br }F (y,{br (xr )})
• Idea: Think of F as mapping from y to {b∗r (xr )}. Directly �tF to make the mapping as accurate as possible.
• Computational Tractability: Restrict F to be convex.
• Model Defects: Learn by minimizing empirical risk, where riskmeasures the accuracy of marginals.
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∑xr wf (xr ,yr )f (br (xr ))
• Typically, F = {b,b logb}. Anything convex over (0,1) is OK.

{b∗r (xr )} = argmin
{br }F (y,{br (xr )})

• Minimization is over some relaxation of the marginal polytopelocal consistency: ∑xc\i bc(xc) = bi (xi )
∑xc bc(xc ) = 1 ∑xi bi (xi ) = 1bc(xc) ≥ 0 bi (xi ) ≥ 0
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Introduction Approach Experiments DiscussionLearning
• Given {(x̂, ŷ)} ∼ p(x,y), how to quantify the quality ofpredicted marginals?
• Many possibilities. Two suggestions:

• Log-loss
• Quad-loss
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∂Llog
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• Try to minimize �expected average univariate quadraticdi�erence�.F ∗ =argminF ∑y p(y)∑i ∑xi (p(xi |y)−b∗i (xi |y,F ))2

=argminF ∑y ∑i ∑xi (−2p(xi ,y)b∗i (xi |y,F )+p(y)b∗i (xi |y,F )2)
≈argminF ∑

{(x̂,ŷ)}∑i (
−2b∗i (x̂i |ŷ,F )+∑xi b∗i (xi |ŷ,F )2)

︸ ︷︷ ︸Lquad
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• Try to minimize �expected average univariate quadraticdi�erence�.Lquad = ∑i (

−2b∗i (x̂i |ŷ,F )+∑xi b∗i (xi |ŷ,F )2)
∂Lquad

∂θj = 2∑i (
−

∂b∗i (x̂i |ŷ,F )

∂θj +∑xi b∗i (xi |ŷ,F )
∂b∗i (xi |ŷ,F )

∂θj )
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∂θj = −∑i ∂b∗i (x̂i |ŷ,F )/∂θjb∗i (x̂i |ŷ,F )

∂Lquad
∂θj = 2∑i (

−
∂b∗i (x̂i |ŷ,F )

∂θj +∑xi b∗i (xi |ŷ,F )
∂b∗i (xi |ŷ,F )

∂θj )If we could calculate ∂b∗i (x̂i |ŷ,F )
∂θj , we could optimize L{log,quad}.However, recall that b∗i (x̂i |ŷ,F ) is implicit.b∗ = argminb ∑f ∈F

wf (y)T f (b)such that Ab = db≥ 0.
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∂θj +∑xi b∗i (xi |ŷ,F )
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Claim 1: Let F (b,θ ) be a continuous function such that for all θ ,F that has a unique stationary point in b.De�ne b∗(θ ) such that
∂F (b∗(θ ),θ )

∂b = 0.Then,
∂b∗(θ )

∂θj = −
(∂ 2F (b∗(θ ),θ )

∂b∂bT )−1 ∂ 2F (b∗(θ ),θ )

∂b∂θj .Proof: (Implicit Function Theorem.)
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∂θj = −
(∂ 2F (b∗(θ ),θ )

∂b∂bT )−1 ∂ 2F (b∗(θ ),θ )

∂b∂θj .

• Not good enough, since F is minimized under constraints.
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Claim 2: De�ne b∗(θ )=̇argminbF (b,θ ), such that Ab = d forsome convex function F . Then,
∂b∗(θ )

∂θj = (D−1AT (AD−1AT )−1AD−1−D−1) ∂ 2F
∂b∂θj , D = (

∂ 2F
∂b∂bT ).Proof: (Make a Lagrangian, apply claim 1, do algebra.)
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∂θj . Procedure:1. Run some optimizationb∗ = argminb ∑f ∈F

wf (y)T f (b)such that Ab= db≥ 0.2. Solve the linear system given by Claim 2 to get ∂L
∂θj .

• When learning, two optimizations:1. �inner� optimization (over {br})2. �outer� optimization (over θ )
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Introduction Approach Experiments DiscussionProblem
• �Denoising� of 10 binary images of each class (1-9) from theMNIST database.

• y is the observed, noisy image
• x is the unobserved, clean image
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• Use regions consisting of individual variables, and neighboringpairs.
• Total of 40 parameters. (Somewhat redundant)

• wb(xc ,yc) (initialize to 0)
• wb(xi ,yi ) (initialize to 0)
• wb logb(xc ,yc) (initialize to 1)
• wb logb(xi ,yi ) (initialize to 1)

• �Inner loop� optimization uses PDCO interior method.
• Tolerances very strict.

• �Outer loop� optimization uses Matlab's BFGS.
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• Compare to CRF toolbox.

• Vishwanathan et al., ICML 2006
• www.cs.ubc.ca/~murphyk/Software/CRF/crf.html

• Inference: mean-�eld or (loopy) belief propagation.
• Learning: Pseudolikelihood, or surrogate to likelihood whereinference algorithm is used to approximate marginals de�ningthe gradient.
• Features are constant + indicator for each possiblecon�guration of each variable/pair.
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PSfrag replacements Classi�cation Error
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PSfrag replacementsClassi�cation Error
Regression Error

0 0.2 0.4 0.6

PSfrag replacements Llog Loss
−0.9 −0.85 −0.8
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• Common to �t classi�ers by minimizing a loss close toclassi�cation error.
• Graphical models, however, usually use a score (the likelihood)that is both

• Di�cult to optimize.
• Remote from empirical risk.

• This paper presents an approach for ��tting a free energy� todirectly give good marginals.
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Thank you.Future Work:1. Di�erent loss functions.2. Better entropy term.3. Exploit hidden variables.4. Better relaxation of marginal polytope.5. Better �inner loop� optimization.6. Better F .
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Introduction Approach Experiments DiscussionFuture Work
1. Di�erent loss functions.

• For example, common to �nd argmaxxi b∗(xi |y).
• Could use a loss function (approximating) the univariateclassi�cation error.(Gross et al. �Training CRFs for maximum labelwise accuracy�, NIPS 2006)



Introduction Approach Experiments DiscussionFuture Work2. More �exible entropy term.
• As described, this approach requires �xing wb logb > 0 toguarantee convexity.
• However, negative entropy terms can be allowed whilepreserving convexity over the locally consistent marginals.
• Easiest approach- just pick a better (�xed) entropyapproximation.(Heskes, �Convexity Arguments for E�cient Minimization of the Bethe andKikuchi Free Energies�, JAIR 2006)
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wb logb(xc ,yc) and wb logb(xi ,yi ) for Lquad with 50% noisexc\yc (0,0) (0,1) (1,0) (1,1)(0,0) 4.86 0.04 0.05 0.02(0,1) 4.22 3.86 4.54 5.00(1,0) 4.13 4.49 2.14 5.13(1,1) 0.06 0.02 0.03 0.02 xi\yi 0 10 4.47 0.021 0.03 0.03
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3. Hidden variables.

• The same algorithm can be used with hidden variables, bytaking the sum over the variables in L{log,quad} over theobserved variables.
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4. Better relaxation of the marginal polytope.

• Currently, the model must try to compensate during thelearning stage for defects in the marginal polytope.
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5. Better �inner loop� optimization.

• Generic optimization is OK for 28x28 images.
• Derive a message passing algorithm?
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6. More general function F .

• Any function F (y,{br (xr )}) can give an implicit mapping.
• As long as it is convex and continuous, learning should bedoable by implicit di�erentiation.

• A larger set F than {b,b logb}?
• Some F based on di�erent principles?
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0 0.01 0.02 0.03 0.04 0.05

PSfrag replacementsClassi�cation Error
Regression Error

0 0.1 0.2 0.3

PSfrag replacements Llog Loss
−1 −0.95 −0.9 −0.85
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