Multi-View Learning over Structured and Non-Identical Outputs

Kuzman Ganchev ${ }^{1}$ João V. Graça ${ }^{2}$ John Blitzer ${ }^{1}$ Ben Taskar ${ }^{1}$
${ }^{1}$ Computer \& Information Science University of Pennsylvania

${ }^{2}$ INESC-ID
Lisboa, Portugal

July 11, 2008

Supervised Learning

- We have a hypothesis class

Supervised Learning

- We have a hypothesis class
labeled data to choose hypothesis

Two View Learning

Two View Learning

- each view performs well alone

Two View Learning

- each view performs well alone
\Longrightarrow correct models should agree on unlabeled data

Two View Learning

- each view performs well alone
\Longrightarrow correct models should agree on unlabeled data
- views don't share too much extra information
\Longrightarrow can further reduce hypothesis space

Two View Learning

- each view performs well alone
\Longrightarrow correct models should agree on unlabeled data
- views don't share too much extra information
\Longrightarrow can further reduce hypothesis space
Assumptions: (Blum \& Mitchell, 1998; Balkan \& Blum, 2006; Kakade and
Foster, 2007)
Structured, Non-Identical Multi-View (Ganchev, Graca, Blitzer, Taskar)

How to learn models that agree

- Learning probabilistic classifiers

How to learn models that agree

- Learning probabilistic classifiers
- \mathcal{L} : log-loss on labeled data L

How to learn models that agree

- Learning probabilistic classifiers
- \mathcal{L} : log-loss on labeled data L
- $\theta=\theta_{1}, \theta_{2}$: model paramters

How to learn models that agree

- Learning probabilistic classifiers
- \mathcal{L} : log-loss on labeled data L
- $\theta=\theta_{1}, \theta_{2}$: model paramters
- D : co-regularizer (encouraging agreement on unlabeled data U)

Co-REGULARIZER

The coregularizer $D \ldots$

- Based on KL distance to a consensus $q=\operatorname{agree}\left(p_{1}, p_{2}\right)$
- p_{i} is distribution given by model i
- Illustrative to think in terms of consensus q

Probabilistic Coregularization

Our Agree Function

$$
\operatorname{agree}\left(p_{1}, p_{2}\right)=\underset{q}{\arg \min } \mathrm{KL}\left(q \| p_{1}\right)+\mathrm{KL}\left(q \| p_{2}\right)
$$

Our Agree Function

$$
\operatorname{agree}\left(p_{1}, p_{2}\right)=\underset{q}{\arg \min } \mathrm{KL}\left(q \| p_{1}\right)+\mathrm{KL}\left(q \| p_{2}\right)
$$

ThEOREM: $\operatorname{agree}\left(p_{1}, p_{2}\right) \propto \sqrt{p_{1} \times p_{2}}$

Algorithm

1: $\theta_{i} \leftarrow \min _{\theta} \mathcal{L}_{i}\left(\theta_{i}\right)$
2: for n iterations do
3: $\quad q\left(y_{1} \mid \mathbf{x}\right) \leftarrow \operatorname{agree}\left(p_{1}\left(y_{1} \mid x\right), p_{2}\left(y_{2} \mid x\right)\right) \quad \forall x \in U$
4: $\quad \theta_{i} \leftarrow \min _{\theta} \mathcal{L}_{i}(\theta)-c \underset{x, y \sim U, q}{\mathbf{E}}\left[\log p_{i}\left(y_{i} \mid x ; \theta\right)\right]$

5: end for

Algorithm

1: $\theta_{i} \leftarrow \min _{\theta} \mathcal{L}_{i}\left(\theta_{i}\right)$
2: for n iterations do
3: $\quad q\left(y_{1} \mid \mathbf{x}\right) \leftarrow \operatorname{agree}\left(p_{1}\left(y_{1} \mid x\right), p_{2}\left(y_{2} \mid x\right)\right) \quad \forall x \in U$
4: $\quad \theta_{i} \leftarrow \min _{\theta} \mathcal{L}_{i}(\theta)-c{\underset{x, y \sim U, q}{\mathbf{E}}\left[\log p_{i}\left(y_{i} \mid x ; \theta\right)\right]}^{2}$
5: end for

Algorithm

1: $\theta_{i} \leftarrow \min _{\theta} \mathcal{L}_{i}\left(\theta_{i}\right)$
2: for n iterations do
3: $\quad q\left(y_{1} \mid \mathbf{x}\right) \leftarrow \operatorname{agree}\left(p_{1}\left(y_{1} \mid x\right), p_{2}\left(y_{2} \mid x\right)\right) \quad \forall x \in U$
4: $\quad \theta_{i} \leftarrow \min _{\theta} \mathcal{L}_{i}(\theta)-c \underset{x, y \sim U, q}{\mathbf{E}}\left[\log p_{i}\left(y_{i} \mid x ; \theta\right)\right]$

5: end for

Algorithm

1: $\theta_{i} \leftarrow \min _{\theta} \mathcal{L}_{i}\left(\theta_{i}\right)$
2: for n iterations do
3: $\quad q\left(y_{1} \mid \mathbf{x}\right) \leftarrow \operatorname{agree}\left(p_{1}\left(y_{1} \mid x\right), p_{2}\left(y_{2} \mid x\right)\right) \quad \forall x \in U$
4: $\quad \theta_{i} \leftarrow \min _{\theta} \mathcal{L}_{i}(\theta)-c{\underset{x, y \sim U, q}{\mathbf{E}}\left[\log p_{i}\left(y_{i} \mid x ; \theta\right)\right]}^{2}$

5: end for

Algorithm

1: $\theta_{i} \leftarrow \min _{\theta} \mathcal{L}_{i}\left(\theta_{i}\right)$
2: for n iterations do
3: $\quad q\left(y_{1} \mid \mathbf{x}\right) \leftarrow \operatorname{agree}\left(p_{1}\left(y_{1} \mid x\right), p_{2}\left(y_{2} \mid x\right)\right) \quad \forall x \in U$
4: $\quad \theta_{i} \leftarrow \min _{\theta} \mathcal{L}_{i}(\theta)-c \underset{x, y \sim U, q}{\mathbf{E}}\left[\log p_{i}\left(y_{i} \mid x ; \theta\right)\right]$
5: end for

THEOREM: this minimizes co-regularized loss:

$$
\mathcal{L}_{1}(\theta)+\mathcal{L}_{2}(\theta)+c \mathbf{E}_{U}\left[\min _{q} \mathrm{KL}\left(q \| p_{1}\right)+\mathrm{KL}\left(q \| p_{1}\right)\right] .
$$

Algorithm

Theorem: this minimizes co-regularized loss:

$$
\mathcal{L}_{1}(\theta)+\mathcal{L}_{2}(\theta)+c \mathbf{E}_{U}\left[\min _{q} \mathrm{KL}\left(q \| p_{1}\right)+\operatorname{KL}\left(q \| p_{1}\right)\right] .
$$

Algorithm

Theorem: this minimizes co-regularized loss:

$$
\begin{gathered}
\mathcal{L}_{1}(\theta)+\mathcal{L}_{2}(\theta)+c \mathbf{E}_{U}\left[\min _{q} \mathrm{KL}\left(q \| p_{1}\right)+\mathrm{KL}\left(q \| p_{1}\right)\right] . \\
=\mathcal{L}_{1}(\theta)+\mathcal{L}_{2}(\theta)+c \mathbf{E}_{U}\left[-\log \sum_{y} \sqrt{p\left(y ; \theta_{1}\right) p\left(y ; \theta_{2}\right)}\right] . \\
\text { Bhattacharyya distance }
\end{gathered}
$$

Linear Model Coregularizer

Stochastic Agreement Regularizer

- log-linear models:

$$
\begin{aligned}
p_{i}(1) & \propto \exp \left(\theta_{i} \cdot x\right) \\
p_{i}(-1) & \propto \exp \left(-\theta_{i} \cdot x\right)
\end{aligned}
$$

OTHER APROACHES

- CoBoosting (Collins and Singer, 1999), CoPerceptron (Brefeld et al., 2005)

OTHER APROACHES

- CoBoosting (Collins and Singer, 1999), CoPerceptron (Brefeld et al., 2005)
- Different regularized loss functions

Different Loss Functions

Stochastic Agreement Regularizer

Different Loss Functions

Stochastic Agreement Regularizer

CoPerceptron

Structured, Non-Identical Multi-View (Ganchev, Graca, Blitzer, Taskar)

Different Loss Functions

Stochastic Agreement Regularizer

CoPerceptron

CoBoosting

OTHER APROACHES

- CoBoosting (Collins and Singer, 1999), CoPerceptron (Brefeld et al., 2005)
- Different regularized loss functions

OTHER APROACHES

- CoBoosting (Collins and Singer, 1999), CoPerceptron (Brefeld et al., 2005)
- Different regularized loss functions
- Hard assignment on unlabeled data

OTHER APROACHES

- CoBoosting (Collins and Singer, 1999), CoPerceptron (Brefeld et al., 2005)
- Different regularized loss functions
- Hard assignment on unlabeled data
- Many others (Blum \& Mitchell, 1998; Sindhwani et al., 2005; Kakade \& Foster, 2007; Suzuki et al., 2007)

Sentiment Classification - Domain Adaptation

 (Blitzer et al, 2007)

- Product reviews from Amazon.com
- Books, DVDs, Kitchen Appliances, Electronics
- 2000 labeled, 3000-6000 unlabeled reviews per domain
- Binary classification problem
- Positive if 4 stars or more, negative if 2 or less
- Transfer learning task
- Views: random split of features

Sentiment Classification

Domains	MIRA	SCL	CoBoost	CoPerc	SAR
books \rightarrow dvds	77.2				
dvds \rightarrow books	72.8				
books \rightarrow electr	70.8				
electr \rightarrow books	70.7				
books \rightarrow kitchn	74.5				
kitchn \rightarrow books	70.9				
dvds \rightarrow electr	73.0				
electr \rightarrow dvds	70.6				
dvds \rightarrow kitchn	74.0				
kitchn \rightarrow dvds	72.7				
electr \rightarrow kitchn	84.0				
kitchn \rightarrow electr	82.7				
Total					

Sentiment Classification

Domains	MIRA	SCL	CoBoost	CoPerc	SAR
books \rightarrow dvds	77.2	-1.4			
dvds \rightarrow books	72.8	6.9			
books \rightarrow electr	70.8	5.1			
electr \rightarrow books	70.7	$\mathbf{4 . 7}$			
books \rightarrow kitchn	74.5	4.4			
kitchn \rightarrow books	70.9	-2.3			
dvds \rightarrow electr	73.0	1.1			
electr \rightarrow dvds	70.6	$\mathbf{5 . 6}$			
dvds \rightarrow kitchn	74.0	7.4			
kitchn \rightarrow dvds	72.7	$\mathbf{4 . 2}$			
electr \rightarrow kitchn	84.0	1.9			
kitchn \rightarrow electr	82.7	$\mathbf{4 . 1}$			
Total		4			

Sentiment Classification

Domains	MIRA	SCL	CoBoost	CoPerc	SAR
books \rightarrow dvds	77.2	-1.4	1.6		
dvds \rightarrow books	72.8	6.9	7.0		
books \rightarrow electr	70.8	5.1	$\mathbf{6 . 2}$		
electr \rightarrow books	70.7	$\mathbf{4 . 7}$	0.3		
books \rightarrow kitchn	74.5	4.4	3.5		
kitchn \rightarrow books	70.9	-2.3	-1.1		
dvds \rightarrow electr	73.0	1.1	2.3		
electr \rightarrow dvds	70.6	$\mathbf{5 . 6}$	2.9		
dvds \rightarrow kitchn	74.0	7.4	5.0		
kitchn \rightarrow dvds	72.7	$\mathbf{4 . 2}$	-2.6		
electr \rightarrow kitchn	84.0	1.9	1.0		
kitchn \rightarrow electr	82.7	$\mathbf{4 . 1}$	0.3		
Total		4	1		

Sentiment Classification

Domains	MIRA	SCL	CoBoost	CoPerc	SAR
books \rightarrow dvds	77.2	-1.4	1.6	-1.7	
dvds \rightarrow books	72.8	6.9	7.0	1.7	
books \rightarrow electr	70.8	5.1	$\mathbf{6 . 2}$	-1.5	
electr \rightarrow books	70.7	$\mathbf{4 . 7}$	0.3	-3.2	
books \rightarrow kitchn	74.5	4.4	3.5	2.0	
kitchn \rightarrow books	70.9	-2.3	-1.1	-4.3	
dvds \rightarrow electr	73.0	1.1	2.3	-1.8	
electr \rightarrow dvds	70.6	$\mathbf{5 . 6}$	2.9	-7.3	
dvds \rightarrow kitchn	74.0	7.4	5.0	4.3	
kitchn \rightarrow dvds	72.7	$\mathbf{4 . 2}$	-2.6	-12.2	
electr \rightarrow kitchn	84.0	1.9	1.0	-0.7	
kitchn \rightarrow electr	82.7	$\mathbf{4 . 1}$	0.3	-2.2	
Total		4	1	0	

Structured, Non-Identical Multi-View (Ganchev, Graca, Blitzer, Taskar)

Sentiment Classification

Domains	MIRA	SCL	CoBoost	CoPerc	SAR
books \rightarrow dvds	77.2	-1.4	1.6	-1.7	$\mathbf{2 . 6}$
dvds \rightarrow books	72.8	6.9	7.0	1.7	$\mathbf{8 . 5}$
books \rightarrow electr	70.8	5.1	$\mathbf{6 . 2}$	-1.5	4.7
electr \rightarrow books	70.7	$\mathbf{4 . 7}$	0.3	-3.2	3.6
books \rightarrow kitchn	74.5	4.4	3.5	2.0	$\mathbf{6 . 5}$
kitchn \rightarrow books	70.9	-2.3	-1.1	-4.3	$\mathbf{1 . 9}$
dvds \rightarrow electr	73.0	1.1	2.3	-1.8	$\mathbf{3 . 5}$
electr \rightarrow dvds	70.6	$\mathbf{5 . 6}$	2.9	-7.3	2.4
dvds \rightarrow kitchn	74.0	7.4	5.0	4.3	$\mathbf{8 . 8}$
kitchn \rightarrow dvds	72.7	$\mathbf{4 . 2}$	-2.6	-12.2	0.1
electr \rightarrow kitchn	84.0	1.9	1.0	-0.7	1.8
kitchn \rightarrow electr	82.7	$\mathbf{4 . 1}$	0.3	-2.2	2.8
Total		4	1	0	$\mathbf{6}$

Structured, Non-Identical Multi-View (Ganchev, Graca, Blitzer, Taskar)

Sentiment Classification

Domains	MIRA	SCL	CoBoost	CoPerc	SAR
books \rightarrow dvds	77.2	-1.4	1.6	-1.7	$\mathbf{2 . 6}$
dvds \rightarrow books	72.8	6.9	7.0	1.7	$\mathbf{8 . 5}$
books \rightarrow electr	70.8	5.1	$\mathbf{6 . 2}$	-1.5	4.7
electr \rightarrow books	70.7	$\mathbf{4 . 7}$	0.3	-3.2	3.6
books \rightarrow kitchn	74.5	4.4	3.5	2.0	$\mathbf{6 . 5}$
kitchn \rightarrow books	70.9	-2.3	-1.1	-4.3	$\mathbf{1 . 9}$
dvds \rightarrow electr	73.0	1.1	2.3	-1.8	$\mathbf{3 . 5}$
electr \rightarrow dvds	70.6	$\mathbf{5 . 6}$	2.9	-7.3	2.4
dvds \rightarrow kitchn	74.0	7.4	5.0	4.3	$\mathbf{8 . 8}$
kitchn \rightarrow dvds	72.7	$\mathbf{4 . 2}$	-2.6	-12.2	0.1
electr \rightarrow kitchn	84.0	1.9	1.0	-0.7	1.8
kitchn \rightarrow electr	82.7	$\mathbf{4 . 1}$	0.3	-2.2	2.8
Total		4	1	0	$\mathbf{6}$

Structured, Non-Identical Multi-View (Ganchev, Graca, Blitzer, Taskar)

Named entity disambiguation

- Classification of CoNLL 2003 named entites:
- Person, location, organization, miscellaneous

Named entity disambiguation

- Classification of CoNLL 2003 named entites:
- Person, location, organization, miscellaneous
- View 1 - Content
- Features look only inside named entity
- View 2 - Context
- Features look only outside named entity

NAMED ENTITY DISAMBIGUATION

Data size	mx-ent	SAR (RRE)
500	74.4	
1000	80.0	
2000	83.4	

- Prior variance and unlabeled weigh choose by cross-validation

NAMED ENTITY DISAMBIGUATION

Data size	mx-ent	SAR (RRE)
500	74.4	$76.4(9.2 \%)$
1000	80.0	$81.7(8.5 \%)$
2000	83.4	$84.8(8.4 \%)$

- Prior variance and unlabeled weigh choose by cross-validation

How to generalize two view Idea

- Structured Output
- Partial Agreement Scenarios
- Both

Structured Output

$$
\operatorname{agree}\left(p_{1}, p_{2}\right)=\underset{q}{\arg \min } \mathrm{KL}\left(q \| p_{1}\right)+\mathrm{KL}\left(q \| p_{2}\right)
$$

Structured Output

$$
\operatorname{agree}\left(p_{1}, p_{2}\right)=\underset{q}{\arg \min } \mathrm{KL}\left(q \| p_{1}\right)+\operatorname{KL}\left(q \| p_{2}\right)
$$

$p_{1}(y \mid x) \propto \prod_{c} \phi_{1}\left(y_{c}, x\right) \quad p_{2}(y \mid x) \propto \prod_{c} \phi_{2}\left(y_{c}, x\right)$

Structured Output

$$
\operatorname{agree}\left(p_{1}, p_{2}\right)=\underset{q}{\arg \min } \mathrm{KL}\left(q \| p_{1}\right)+\mathrm{KL}\left(q \| p_{2}\right)
$$

$$
p_{1}(y \mid x) \propto \prod_{c} \phi_{1}\left(y_{c}, x\right) \quad p_{2}(y \mid x) \propto \prod_{c} \phi_{2}\left(y_{c}, x\right)
$$

Theorem:

$$
q_{i}(y) \propto \prod_{c} \sqrt{\phi_{1}\left(y_{c}, x\right) \phi_{2}\left(y_{c}, x\right)}
$$

Structured Prediction

Small experiments on structured task.

- English NP-chunking from CoNLL 2000
- 500 sentences test data
- views are:
- current word and POS tag
- previous/next word and POS tag

Structured Prediction

size	Perc	coPerc	CRF	SAR(RRE)
10	69.4			
20	74.4			
50	80.1			
100	86.1			
200	89.3			
500	90.8			
1000	91.5			

Structured Prediction

size	Perc	coPerc	CRF	SAR(RRE)
10	69.4	71.2		
20	74.4	76.8		
50	80.1	84.1		
100	86.1	88.1		
200	89.3	$\mathbf{8 9 . 7}$		
500	90.8	90.9		
1000	91.5	$\mathbf{9 1 . 8}$		

Structured Prediction

size	Perc	coPerc	CRF	SAR(RRE)
10	69.4	71.2	73.2	
20	74.4	76.8	79.4	
50	80.1	84.1	86.3	
100	86.1	88.1	88.5	
200	89.3	$\mathbf{8 9 . 7}$	89.6	
500	90.8	90.9	$\mathbf{9 1 . 3}$	
1000	91.5	$\mathbf{9 1 . 8}$	91.6	

Structured Prediction

size	Perc	coPerc	CRF	SAR(RRE)
10	69.4	71.2	73.2	$\mathbf{7 8 . 2}(19 \%)$
20	74.4	76.8	79.4	$\mathbf{8 4 . 2}(23 \%)$
50	80.1	84.1	86.3	$\mathbf{8 6 . 9}(4 \%)$
100	86.1	88.1	88.5	$\mathbf{8 8 . 9}(3 \%)$
200	89.3	$\mathbf{8 9 . 7}$	89.6	$89.6(0 \%)$
500	90.8	90.9	$\mathbf{9 1 . 3}$	$90.6(-8 \%)$
1000	91.5	$\mathbf{9 1 . 8}$	91.6	$91.1(-6 \%)$

Different output spaces

Different output spaces

- Different Tag Sets between views

Different output spaces

- Different Tag Sets between views

Different output spaces

- Different Tag Sets between views
- Partial mapping between labels

Algorithm

- Algorithm stays the same
- Consensus changes:

$$
\begin{aligned}
\operatorname{agree}\left(p_{1}, p_{2}\right)= & \underset{q}{\arg \min } \operatorname{KL}\left(q\left(y_{1}, y_{2}\right) \| p_{1}\left(y_{1}\right) p_{2}\left(y_{2}\right)\right) \\
& \text { s.t. } q\left(z_{1}, z_{2}\right)=q\left(z_{1}\right) q\left(z_{2}\right) \\
& \text { where } z_{i}=g\left(y_{i}\right)
\end{aligned}
$$

$g_{i}\left(y_{i}\right)$: mapping from output of model i to common space

Different output spaces

Different output spaces

Different output spaces

Summary

- New two-view learning algorithm

Summary

- New two-view learning algorithm
- Probabilistic interpretation

Summary

- New two-view learning algorithm
- Probabilistic interpretation
- Generalizes naturally to structured data

Summary

- New two-view learning algorithm
- Probabilistic interpretation
- Generalizes naturally to structured data, partial agreement

Summary

- New two-view learning algorithm
- Probabilistic interpretation
- Generalizes naturally to structured data, partial agreement
- Empirically better than non-smooth alternatives

Thanks!

Structured, Non-Identical Multi-View (Ganchev, Graca, Blitzer, Taskar)

