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classical concentration

Law of large numbers: if Xj,..., X, € [0, 1] are independent,
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For example,



Hoeffding's inequality

Wassily Hoeffding, born in 1914,
Mustamaki, Finland




concentration

The phenomenon extends to general functions of independent
random variables.

Various methods:

- martingales (Yurinskii, 1974; Milman and Schechtman, 1986;
McDiarmid, 1989,1998);

- information theoretic methods (Alhswede, Gacs, and Korner,
1976; Marton 1986, 1996, 1997; Dembo 1997);

- Talagrand's induction method 1996;

- logarithmic Sobolev inequalities (Ledoux 1996, Massart 1998,
Boucheron, Lugosi, Massart 1999, 2001).



Efron-Stein inequality (1981)

Let Xy,...,X, be independent random variables taking values in
X. Letf: X" — R and
Z="f(X1y...,X%Xn) .
If Xi,..., X! are independent copies of Xi,...,X,, and
ZO = f(Xg, .oy Xim1, Xy Xig1s -« - » X)),

then
1
var(Z) < EE

zn:(z — z(‘))2] =F zn:(z — z(i))i] .
i=1 i=1

Message: Z is concentrated if it doesn’t depend too much on any
of its variables.




Efron and Stein




Efron and Stein




example: uniform deviations

Let A be a collection of subsets of X, and let X1,...,X, ben
random points in X', drawn i.i.d.
Let

1 n
P(A) = P{X; € A} and P,(A) = - > lxea
i=1

It Z = suppc.4|P(A) — Pu(A))],

1
var(Z) < on
n



example: random VC dimension

Let f(x1,...,Xn) be the size of the largest subset of {x1,...,Xn}
shattered by \A.

If Z =f(X1,...,Xys), then, deterministically,
Y(@z-29) <z
i=1

so by Efron-Stein,
var(Z) < EzZ



Vapnik and Chervonenkis




example: conditional Rademacher averages

Let

f(x15...,%n) = E¢

n
sup Z ei]]-x;EA]

AEAD

where the € are i.i.d. P{¢ =1} =P{¢ = -1} =1/2. If
Z = f(X1,...,Xp), then, again,

Y(z-29) <z
i=1

and
var(Z) < EzZ



Shannon entropy

In many cases much more can be said: exponential inequalities.

If X,Y are random variables taking values in a set of
size n,

H(X) = — ) _ p(x) log p(x)

X

H(XIY) = H(X, Y)—H(Y) = — 3 p(x.y) log p(xly) [

X

H(X) < logn and H(X|Y) < H(X)




Han's inequality

If X = (X1, - -+ Xn)
and X0 = (X1, ..., Xi_1, Xiz1, - - - s Xn),
then

n

> (HX) = HXD)) < H(X)

i=1

Te Sun Han



an isoperimetric inequality in the hypercube

IfAC {-1,1}", let X = (X1,...,X;,) be uniformly distributed
in A.
Then H(X) = log |A| and Han’s inequality implies
2n
|0e(A)] = |Allog -
A
where 9g(A) is the set of edges between A and A€.

“Edge isoperimetric inequality.” Equality for sub-cubes.



a logarithmic Sobolev inequality

If Z > 0 is a random variable,

Ent(Z) = E[Zlog Z] — (EZ) log(EZ)
Let X = (X1,...,Xy) be uniformly distributed over {—1,1}". If
f:{-1,1}" — R and Z = f(X),

Zn:(z — z(‘))2]

i=1

Ent(Z?) < E

Implies Efron-Stein and the isoperimetric inequality.



exponential concentration

If f: {—1,1}" — R, the log-Sobolev inequality is used with
g(x) = eM(M/2 where A eR

If F(A) = E [eM(X)] is the moment generating function of f(X),

Ent(g(X)?) = AE [f(X)eX®| —E XX l0gE [f(X)e™)]
= AF'(A) — F(A) log F()).

Differential inequalities are obtained for F(\).
For example, if f such that > ;(Z — Z(i))?l_ <,

AF/(A) — F(A) log F(\) < V4>‘2F(>\)

Solution:
F(A) < eA]Ez—sz/4

P{Z > EZ +t} < et/



bounded differences inequality

An easy consequence: if f is such
that |Z — 20| < 1,

P{|Z — EZ| > t} < 2e~2/n

“Azuma'’s inequality.”
“McDiarmid’s inequality.”




variations

The method allows one to derive a variety of exponential
concentration inequalities.

For example, if Z is either the random VC dimension or a
conditional Rademacher average,
P{Z > EZ + t} < e—tz/(2E2+2t/3)

and ,
P{Z < EZ — t} < eV /(2E2)



Influences

If A C {—1,1}" and X = (Xi,...,Xp) is uniform, the influence
of the i-th variable is

L(A) =P {]lxeA = ]lx(‘)eA}

where X0 = (Xq1,...,Xi—1,1 — Xi, Xiz1, - - - » Xn)-

The total influence is

=3 ua (=280

i=1




Influences: examples

dictatorship: A = {x: x; = 1}. I(A) = 1.
parity: A = {x:) ;=1 iseven}. I(A) =n.

majority: A = {x: >, x > 0}. I(A) = /2n/7.

by Efron-Stein, P(A)(1 — P(A)) < —— ( )

so dictatorship has smallest total influence (if P(A) = 1/2).



Falik-Samorodnitsky

If A C {—1,1}", logarithmic Sobolev inequality implies
AP(A)(1 —P(A)) _ H(A)

> li(A)? - 4
Corollary: (Kahn, Kalai, Linial, 1988).

P(A)(1 — P(A)) log

P(A)(1 — P(A))logn

max l;(A) >
If the influences are equal,
I(A) > P(A)(1 — P(A))logn

Another corollary: (Friedgut, 1998).
If 1(A) < c, A (basically) depends on a bounded number of
variables. A is a “junta.”



threshold phenomena

Let A C {—1,1}" be a monotone set and let X = (X1,...,Xn)
be such that

P{Xi=1}=p P{Xi=-1}=1-p
Po(A) = Z plxlia — pyn—lixll
xEA
is an increasing function of p € [0, 1].
Let p, be such that Py, (A) = a.
Critical value = py /2

Threshold width: p1—e — pe



Two (extreme) examples

dictatorship majority (with n = 101)
threshold width = 1 — 2e < y/log(1/€)/(2n)

In what cases do we have a quick transition?



Russo's lemma

If A is monotone,
dP,(A)

dp
The Kahn, Kalai, Linial result, generalized for p # 1/2, implies

that
if Ais such that I = 1P = ... =1 then

Iogl
Pi—e —Pc=0 < E)
logn

On the other hand, if p3/4 — p1/4 > c then A is (basically) a
junta.

= I(P)(A)




Bobkov's inequality (1997)

Let f: {—1,1}" — [0, 1] and X be uniformly distributed.

v(p) = ¢(W~1(p))

where W is the standard normal

distribution function and

b=

Y(EF(X)) < E%(f(x»z 3 20 (00 = F(xOp)

Bobkov proves the gaussian isoperimetric theorem based on this
inequality.



aplication for influences

If A C {—1,1}", define f(x) = Lyea.
Then ~v(f(x)) = 0 and by Bobkov's inequality,
7(P(A)) < Evha(X)
where ha(x) = #{i: x() ¢ A,x € A}.
By Cauchy-Schwarz,
Ev/ha(X) < v/Eha(X)y/P(8v(A))
where 9y (A) C A is the boundary of A.
But Eha(X) = I(A) so if P(A) = 1/2,

I(A)P(8v(A)) > constant



